Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycle Timing

Of course, deposition times can be decreased by using a larger driving force, but that runs the risk of bulk deposition. It is easy to envision a cycle where overpotentials are used, and the deposition is simply stopped after a monolayer of charge has passed. Such a cycle would not involve surface limited reactions and 3D growth would be expected. [Pg.33]

Besides the flow rate, rinse times are very important. As discussed previously, if rinsing is insufficient to achieve the desired pH, deleterious effects can result. The example was given that if Te solutions are too acidic, bulk Te will form. [Pg.34]

Generally, this group has used stop flow to provide adequate deposition times, and to limit the volumes of solution needed. Villegas et al. have used continuous pumping, with good results [114], which may be an important alternative. [Pg.34]


For batch reactors, account has to be taken of the time required to achieve a given conversion. Batch cycle time is addressed later. [Pg.26]

The step with the longest time limits the cycle time. Alternatively, if more than one step is carried out in the same equipment, the cycle time is limited by the longest series of steps in the same equipment. The batch cycle time must be at least as long as the longest step. The rest of the equipment other than the limiting step is then idle for some fraction of the batch cycle. [Pg.117]

Clearly, the time chart shown in Fig. 4.14 indicates that individual items of equipment have a poor utilization i.e., they are in use for only a small fraction of the batch cycle time. To improve the equipment utilization, overlap batches as shown in the time-event chart in Fig. 4.15. Here, more than one batch, at difierent processing stages, resides in the process at any given time. Clearly, it is not possible to recycle directly from the separators to the reactor, since the reactor is fed at a time different from that at which the separation is carried out. A storage tank is needed to hold the recycle material. This material is then used to provide part of the feed for the next batch. The final flowsheet for batch operation is shown in Fig. 4.16. Equipment utilization might be improved further by various methods which are considered in Chap. 8 when economic tradeoffs are discussed. [Pg.121]

Figure 4.15 Overlapping batches in Example 4.5 reduces the batch cycle time. Figure 4.15 Overlapping batches in Example 4.5 reduces the batch cycle time.
The batch cycle time has been reduced from 2.6 to 1.3 hours. This means that a greater number of batches can be processed, and hence, if there are two reactors each with the original capacity, the process capacity has increased. However, the increase in capacity has been achieved at the expense of increased capital cost for the second reactor. An economic assessment is required before we can judge whether the tradeoff is justified. [Pg.249]

Merging more than one operation into a single piece of equipment (e.g., feed preheating and reaction in the same vessel), providing these operations are not limiting the cycle time. [Pg.251]

Introducing parallel operations to the steps which limit the batch cycle time. [Pg.251]

Increasing the size of equipment in the steps which limit the batch cycle time to reduce the dead time for those steps which are not limiting. [Pg.251]

Whether parallel operations, larger or smaller items of equipment, and intermediate storage should be used can only be judged on the basis of economic tradeoffs. However, this is still not the complete picture as far as the batch process tradeoffs are concerned. So far the batch size has not been varied. Batch size can be varied as a function of cycle time. Overall, the variables are... [Pg.251]

Because the transputer has a 32-bit processor and fast access to considerable quantities of on-chip RAM, it has been called a computer on a chip. Transputers are inherently faster than microprocessors, which have to refer to RAM outside the chip on which they reside. Thus the 100-nsec cycle time used in the above illustration may be only 50 nsec when carried out on the transputer chip. [Pg.313]

The primary control variables at a fixed feed rate, as in the operation pictured in Figure 8, are the cycle time, which is measured by the time required for one complete rotation of the rotary valve (this rotation is the analog of adsorbent circulation rate in an actual moving-bed system), and the Hquid flow rate in Zones 2, 3, and 4. When these control variables are specified, all other net rates to and from the bed and the sequence of rates required at the Hquid... [Pg.296]

The fundamental case for pressure filters may be made using equation 10 for dry cake production capacity Y (kg/m s) derived from Darcy s law when the filter medium resistance is neglected. Eor the same cycle time (same speed), if the pressure drop is increased by a factor of four, production capacity is doubled. In other words, filtration area can be halved for the same capacity but only if is constant. If increases with pressure drop, and depending how fast it increases, the increased pressure drop may not give much more capacity and may actually cause capacity reductions. [Pg.393]

Optimization of Cycle Times. In batch filters, one of the important decisions is how much time is allocated to the different operations such as filtration, displacement dewatering, cake washing, and cake discharge, which may involve opening of the pressure vessel. Ah. of this has to happen within a cycle time /. which itself is not fixed, though some of the times involved may be defined, such as the cake discharge time. [Pg.393]

Filtration and compression take place with the press closed and the belt stationary the press is then opened to allow movement of the belt for cake discharge over a discharge roUer of a small diameter. This allows washing of the belt on both sides (Fig. 15). Cycle times are short, typically between 10 and 30 minutes, and the operation is fully automated. Si2es up to 32 m are available and the maximum cake thickness is 35 mm. [Pg.404]

The ECLP tube press was originally developed for the filtration of china clay but has been used with many other slurries such as those in mining, Ti02, cement, sewage sludge, etc. The typical cycle time is about four minutes or more. [Pg.405]

The vertical recessed plate automatic press, shown schematically in Figure 15 and described previously, is another example of a horizontal belt pressure filter. Cycle times ate short, typically between 10 and 30 minutes, and the operation is fully automated. The maximum cake thickness is about 35 mm washing and dewatering (by air displacement) of cakes is possible. Apphcations include treatment of mineral slurries, sugar, sewage sludge, and fillers like talc, clay, and whiting. [Pg.407]

Ultrasonic Welding. Ultrasonic welding has been appHed to Tefzel with weld strength up to 80% of the strength of the base resin. Typical conditions include a contact pressure of 172 kPa (25 psi) and 1—2 s cycle time. The two basic designs, the shear and butt joints, employ a small initial contact area to concentrate and direct the high frequency vibrational energy. [Pg.370]

Because cycle time to inject, flow, set, open, eject, and close is finite, and the face area or platen size is limited, the effective mol ding area is increased by increasing the number of mold cavities so that the number of finished pieces per cycle may be multipHed many times. [Pg.453]

Electrode consumption for ferrous melting a-c furnaces usually averages 2.5—6 kg/1 of molten metal dependent on the particular furnace practices. D-c furnaces have electrode consumptions that are about 30% lower for similar operations. A typical energy consumption for a typical high productivity ministeel mill practice is 400 kW h/t. In comparison, power consumptions exceeding 600 kW h/t ia foundries is not unusual because of longer furnace cycle times. [Pg.122]

Modification of BPA-PC for adaptation to the conditions of production of CD and CD-ROM disks, and of substrate disks for WORM and EOD was necessary. BPA-PC standard quaHties for extmsion and injection mol ding have, depending on molecular weight, melt flow indexes (MEI), (according to ISO 1130/ASTM 1238 in g/10 min at 300°C/1.2 kg, between less than 3 g/10 min (viscous types) up to 17 g/10 min. For CDs and optical data storage disks, however, MEI values exceeding 30 g/10 min, and for exceptionally short cycle times (5—7 s) even >60 g/lOmin are demanded at an injection mass temperature of 300°C (see Table 5). [Pg.157]


See other pages where Cycle Timing is mentioned: [Pg.117]    [Pg.123]    [Pg.249]    [Pg.249]    [Pg.250]    [Pg.250]    [Pg.251]    [Pg.57]    [Pg.23]    [Pg.1484]    [Pg.322]    [Pg.91]    [Pg.416]    [Pg.206]    [Pg.279]    [Pg.281]    [Pg.283]    [Pg.388]    [Pg.52]    [Pg.393]    [Pg.393]    [Pg.402]    [Pg.459]    [Pg.156]    [Pg.156]    [Pg.158]    [Pg.161]    [Pg.162]    [Pg.511]   


SEARCH



Cycle time

© 2024 chempedia.info