Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Current in Voltammetry

Any current in an electrochemical cell due to an oxidation or reduction reaction. [Pg.510]

Sign Conventions Since the reaction of interest occurs at the working electrode, the classification of current is based on this reaction. A current due to the analyte s reduction is called a cathodic current and, by convention, is considered positive. Anodic currents are due to oxidation reactions and carry a negative value. [Pg.510]

Influence of Applied Potential on the Faradaic Current As an example, let s consider the faradaic current when a solution of Fe(CN)6 is reduced to Fe(CN)6 at the working electrode. The relationship between the concentrations of Fe(CN)6 , Fe(CN)6 A and the potential of the working electrode is given by the Nernst equation thus [Pg.510]

Although the applied potential at the working electrode determines if a faradaic current flows, the magnitude of the current is determined by the rate of the resulting oxidation or reduction reaction at the electrode surface. Two factors contribute to the rate of the electrochemical reaction the rate at which the reactants and products are transported to and from the surface of the electrode, and the rate at which electrons pass between the electrode and the reactants and products in solution. [Pg.511]

The movement of material toward or away from the electrode surface. [Pg.511]


The limiting current in voltammetry is the current plateau that is observed at the top of the voltammet-ric wave. It occurs because the surface concentration of the analyte falls to zero. At this point, the mass transfer rate is its maximum value. The limiting current plateau is an example of complete concentration polarization. [Pg.673]

Diffusion current, The limiting current in voltammetry when diffusion is the major form of mass transfer. [Pg.1107]

Figure 5. Scan rate independence of limiting current in voltammetry under ultrasound. System Ferrocyanide in aqueous solution at platinum wire electrode (taken from ref. 31). Figure 5. Scan rate independence of limiting current in voltammetry under ultrasound. System Ferrocyanide in aqueous solution at platinum wire electrode (taken from ref. 31).
In voltammetry a time-dependent potential is applied to an electrochemical cell, and the current flowing through the cell is measured as a function of that potential. A plot of current as a function of applied potential is called a voltammogram and is the electrochemical equivalent of a spectrum in spectroscopy, providing quantitative and qualitative information about the species involved in the oxidation or reduction reaction.The earliest voltammetric technique to be introduced was polarography, which was developed by Jaroslav Heyrovsky... [Pg.508]

Peak currents in anodic stripping voltammetry are a linear function of concentration... [Pg.522]

In voltammetry we measure the current in an electrochemical cell as a function of the applied potential. Individual voltammetric methods differ in terms of the type of electrode used, how the applied potential is changed, and whether the transport of material to the electrode s surface is enhanced by stirring. [Pg.533]

FIGURE 3-11 Potential-time waveform used in alternating current (AC) voltammetry. [Pg.75]

In many other cases (by a change in experimental conditions, faster chemical reaction) the value of the catalytic current may be governed by the SET rate (see reaction 20). The value of k1 may be found and its variation as a function of the nature of the mediator (with several values for °j) leads by extrapolation (when k2 can be assumed to be diffusion-controlled) to the thermodynamical potential °RS02Ar which is somewhat different from the reduction potentials of overall ECE processes observed in voltammetry. [Pg.1017]

The current is recorded as a function of time. Since the potential also varies with time, the results are usually reported as the potential dependence of current, or plots of i vs. E (Fig.12.7), hence the name voltammetry. Curve 1 in Fig. 12.7 shows schematically the polarization curve recorded for an electrochemical reaction under steady-state conditions, and curve 2 shows the corresponding kinetic current 4 (the current in the absence of concentration changes). Unless the potential scan rate v is very low, there is no time for attainment of the steady state, and the reactant surface concentration will be higher than it would be in the steady state. For this reason the... [Pg.201]

The key factor in voltammetry (and polarography) is that the applied potential is varied over the course of the measurement. The voltammogram, which is a current-applied potential curve, / = /( ), corresponds to a voltage scan over a range that induces oxidation or reduction of the analytes. This plot allows identification and measurement of the concentration of each species. Several metals can be determined. The limiting currents in the redox processes can be used for quantitative analysis this is the basis of voltammetric analysis [489]. The methods are based on the direct proportionality between the current and the concentration of the electroactive species, and exploit the ease and precision of measuring electric currents. Voltammetry is suitable for concentrations at or above ppm level. The sensitivity is often much higher than can be obtained with classical titrations. The sensitivity of voltammetric... [Pg.669]

In voltammetry (abbreviation of voltamperometry), a current-potential curve of a suitably chosen electrochemical cell is determined, from which qualitative and/or quantitative analytical data can be obtained. [Pg.114]

In voltammetry as an analytical method based on measurement of the voltage-current curve we can distinguish between techniques with non-stationary and with stationary electrodes. Within the first group the technique at the dropping mercury electrode (dme), the so-called polarography, is by far the most important within the second group it is of particular significance to state whether and when the analyte is stirred. [Pg.128]

Current-sampled DC and often are used in voltammetry superimposed AC polarography... [Pg.151]

The electrochemical detection of pH can be carried out by voltammetry (amper-ometry) or potentiometry. Voltammetry is the measurement of the current potential relationship in an electrochemical cell. In voltammetry, the potential is applied to the electrochemical cell to force electrochemical reactions at the electrode-electrolyte interface. In potentiometry, the potential is measured between a pH electrode and a reference electrode of an electrochemical cell in response to the activity of an electrolyte in a solution under the condition of zero current. Since no current passes through the cell while the potential is measured, potentiometry is an equilibrium method. [Pg.287]

As the field of electrochemical kinetics may be relatively unfamiliar to some readers, it is important to realize that the rate of an electrochemical process is the current. In transient techniques such as cyclic and pulse voltammetry, the current typically consists of a nonfaradaic component derived from capacitive charging of the ionic medium near the electrode and a faradaic component that corresponds to electron transfer between the electrode and the reactant. In a steady-state technique such as rotating-disk voltammetry the current is purely faradaic. The faradaic current is often limited by the rate of diffusion of the reactant to the electrode, but it is also possible that electron transfer between the electrode and the molecules at the surface is the slow step. In this latter case one can define the rate constant as ... [Pg.381]

This is a dynamic electrochemical technique, which can be used to study electron transfer reactions with solid electrodes. A voltammo-gram is the electrical current response that is due to applied excitation potential. Chapter 18b describes the origin of the current in steady-state voltammetry, chronoamperometry, cyclic voltammetry, and square wave voltammetry and other pulse voltammetric techniques. [Pg.19]

One specific variant of the technique is known as direct current cyclic voltammetry (DCCV), in which the voltage sweep is over a limited range and a short time and is immediately reversed. The cycle is repeated many times and the pattern of current change is monitored. The technique uses relatively simple electrodes and is used to study redox reactions and there are a range of sophisticated variants of the technique. [Pg.189]

In the case when the preceding chemical reaction occurs at a rate of the same order as the intervention time scale of cyclic voltammetry, the repercussions of the chemical complication on the potential of the electrode process are virtually negligible, whereas there is a significant effect on the current. In particular, it is characteristic of this mechanism that the forward current decreases with the scan rate much more than the reverse current. This implies that the current ratio ipr/ipf is always greater than 1, increasing as scan rates are increased. [Pg.71]

UMEs decrease the effects of non-Earadaic currents and of the iR drop. At usual timescales, diffusional transport becomes stationary after short settling times, and the enhanced mass transport leads to a decrease of reaction effects. On the other hand, in voltammetry very high scan rates (i up to 10 Vs ) become accessible, which is important for the study of very fast chemical steps. For organic reactions, minimization of the iR drop is of practical value and highly nonpolar solvents (e.g. benzene or hexane [8]) have been used with low or vanishing concentrations of supporting electrolyte. In scanning electrochemical microscopy (SECM [70]), the small size of UMEs is exploited to locahze electrode processes in the gm scale. [Pg.20]

In voltammetry, the electrode is a solid conductor. The surface of the electrode is not refreshed constantly as it is for a DME, so voltammograms do not have a sawtoothed shape, but are smooth. Rather than a current plateau. Id, voltammograms contain a peak current. Ip, with the magnitude of the peak being directly proportional to the bulk concentration of analyte, according to the Randles-Sev5ik equation (equation (6.13)). [Pg.194]

Bott, A.W., Practical problems in voltammetry. 3 Reference electrodes for voltammetry . Current Separations, 14, 64-68 (1995) is an excellent first stop for the novice, as is Bott, A. W Characterization of chemical reactions coupled to electron-transfer reactions using cyclic voltammetry . Current Separations, 18, 9-16 (1999), which also introduces simulations. In addition, the article by Hitchman and Hill in Chemistry in Britain (see above) contains a low-level general introduction to cyclic voltammetry for analyses. [Pg.335]


See other pages where Current in Voltammetry is mentioned: [Pg.510]    [Pg.77]    [Pg.487]    [Pg.1095]    [Pg.478]    [Pg.381]    [Pg.77]    [Pg.487]    [Pg.510]    [Pg.77]    [Pg.487]    [Pg.1095]    [Pg.478]    [Pg.381]    [Pg.77]    [Pg.487]    [Pg.1930]    [Pg.513]    [Pg.521]    [Pg.591]    [Pg.74]    [Pg.1005]    [Pg.267]    [Pg.591]    [Pg.1005]    [Pg.166]    [Pg.182]    [Pg.618]    [Pg.19]    [Pg.420]    [Pg.676]    [Pg.322]    [Pg.472]    [Pg.472]   


SEARCH



In voltammetry

Peak current in cyclic voltammetry

Voltammetry current

© 2024 chempedia.info