Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystallinity prevention

Intrinsic defects (or native or simply defects ) are imperfections in tire crystal itself, such as a vacancy (a missing host atom), a self-interstitial (an extra host atom in an otherwise perfect crystalline environment), an anti-site defect (in an AB compound, tliis means an atom of type A at a B site or vice versa) or any combination of such defects. Extrinsic defects (or impurities) are atoms different from host atoms, trapped in tire crystal. Some impurities are intentionally introduced because tliey provide charge carriers, reduce tlieir lifetime, prevent tire propagation of dislocations or are otlierwise needed or useful, but most impurities and defects are not desired and must be eliminated or at least controlled. [Pg.2884]

It may occasionally happen, particularly if the solution is approaching saturation, that a small quantity of the crystalline solute separates at the top of the tube H in the zone Z, i.e, immediately above the source of the heat. This may be prevented by placing a narrow oblong piece of asbestos paper, with slots cut in each end, horizontally between the tubes H and D, the slots fitting over the lower narrow ends of the condenser C and the cup F. [Pg.445]

Solid organic compounds when isolated from organic reactions are seldom pure they are usually contaminated with small amounts of other compounds ( impurities ) which are produced along with the desired product. Tlie purification of impure crystalline compounds is usually effected by crystallisation from a suitable solvent or mixture of solvents. Attention must, however, be drawn to the fact that direct crystallisation of a crude reaction product is not always advisable as certain impurities may retard the rate of crystallisation and, in some cases, may even prevent the formation of crystals entirely furthermore, considerable loss of... [Pg.122]

Conduct the preparation in the fume cupboard. Dissolve 250 g. of redistilled chloroacetic acid (Section 111,125) in 350 ml. of water contained in a 2 -5 litre round-bottomed flask. Warm the solution to about 50°, neutralise it by the cautious addition of 145 g. of anhydrous sodium carbonate in small portions cool the resulting solution to the laboratory temperature. Dissolve 150 g. of sodium cyanide powder (97-98 per cent. NaCN) in 375 ml. of water at 50-55°, cool to room temperature and add it to the sodium chloroacetate solution mix the solutions rapidly and cool in running water to prevent an appreciable rise in temperature. When all the sodium cyanide solution has been introduced, allow the temperature to rise when it reaches 95°, add 100 ml. of ice water and repeat the addition, if necessary, until the temperature no longer rises (1). Heat the solution on a water bath for an hour in order to complete the reaction. Cool the solution again to room temperature and slowly dis solve 120 g. of solid sodium hydroxide in it. Heat the solution on a water bath for 4 hours. Evolution of ammonia commences at 60-70° and becomes more vigorous as the temperature rises (2). Slowly add a solution of 300 g. of anhydrous calcium chloride in 900 ml. of water at 40° to the hot sodium malonate solution mix the solutions well after each addition. Allow the mixture to stand for 24 hours in order to convert the initial cheese-Uke precipitate of calcium malonate into a coarsely crystalline form. Decant the supernatant solution and wash the solid by decantation four times with 250 ml. portions of cold water. Filter at the pump. [Pg.490]

Because of the high melt viscosity of polyolefins, normal spinning melt temperatures are 240—310°C, which is 80—150°C above the crystalline melting point. Because of the high melt temperatures used for polyolefin fiber spinning, thermal stabilizers such as substituted hindered phenols are added. In the presence of pigments, the melt temperature must be carefully controlled to prevent color degradation and to obtain uniform color dispersion. [Pg.317]

Stabilization of the Cellular State. The increase in surface area corresponding to the formation of many ceUs in the plastic phase is accompanied by an increase in the free energy of the system hence the foamed state is inherently unstable. Methods of stabilizing this foamed state can be classified as chemical, eg, the polymerization of a fluid resin into a three-dimensional thermoset polymer, or physical, eg, the cooling of an expanded thermoplastic polymer to a temperature below its second-order transition temperature or its crystalline melting point to prevent polymer flow. [Pg.404]

The influences of herbicides on cell division fall into two classes, ie, dismption of the mitotic sequence and inhibition of mitotic entry from interphase (G, S, G2). If ceU-cycle analyses indicate increases in abnormal mitotic figures, combined with decreases in one or more of the normal mitotic stages, the effect is upon mitosis. Mitotic effects usually involve the microtubules of the spindle apparatus in the form of spindle depolymerization, blocked tubulin synthesis, or inhibited microtubule polymerization (163). Alkaloids such as colchicine [64-86-8J,viahla.stiae [865-21-4] and vincristine [57-22-7] dismpt microtubule function (164). Colchicine prevents microtubule formation and promotes disassembly of those already present. Vinblastine and vincristine also bind to free tubulin molecules, precipitating crystalline tubulin in the cytoplasm. The capacities of these dmgs to interfere with mitotic spindles, blocking cell division, makes them useful in cancer treatment. [Pg.46]

Water. Latices should be made with deionized water or condensate water. The resistivity of the water should be at least lO Q. Long-term storage of water should be avoided to prevent bacteria growth. If the ionic nature of the water is poor, problems of poor latex stabiUty and failed redox systems can occur. Antifreeze additives are added to the water when polymerization below 0°C is required (37). Low temperature polymerization is used to limit polymer branching, thereby increasing crystallinity. [Pg.24]

Sealant Manufacturing. Most sealants use mineral-based fillers which may contain small amounts of crystalline siHca. If crystalline siHca is present, dust control is important to prevent inhalation of these particles. Crystalline siHca is a known cause of siHcosis, a debiHtating disease of the lung. Another common safety concern in sealant manufacturing is the use of flammable materials. Not all sealants use flammable ingredients, but for those that do, proper inerting and grounding are needed to prevent potential explosions. [Pg.314]

Tantalum Compounds. Potassium heptafluorotantalate [16924-00-8] K TaF, is the most important tantalum compound produced at plant scale. This compound is used in large quantities for tantalum metal production. The fluorotantalate is prepared by adding potassium salts such as KCl and KF to the hot aqueous tantalum solution produced by the solvent extraction process. The mixture is then allowed to cool under strictiy controlled conditions to get a crystalline mass having a reproducible particle size distribution. To prevent the formation of oxyfluorides, it is necessary to start with reaction mixtures having an excess of about 5% HF on a wt/wt basis. The acid is added directiy to the reaction mixture or together with the aqueous solution of the potassium compound. Potassium heptafluorotantalate is produced either in a batch process where the quantity of output is about 300—500 kg K TaFy, or by a continuously operated process (28). [Pg.327]

Because of the multiple conjugated olefinic stmcture in the molecule, pure crystalline carotenoids are very sensitive to light and air and must be stored in sealed containers under vacuum or inert gas to prevent degradation. Thus, commercial utilization as food colorings was initially limited however, stable forms were developed and marketed as emulsions, oil solutions and suspensions, and spray-dried forms. [Pg.431]

Ammonium bisulfite can be used in place of the sulfur dioxide. The solution is treated with activated carbon and filtered to remove traces of sulfur. Excess ammonia is added and the solution evaporated if the anhydrous crystalline form is desired. The crystals ate dried at low temperature in the presence of ammonia to prevent decomposition (61—63). [Pg.31]

L-Fohc acid is available as a crystalline dihydrate containing 8% water. Approximately 80% of the commercial production is consumed for feed enrichment in animal nutrition. FoHc acid is being offered by the pharmaceutical industry for therapeutic and prophylactic use (see Pharmaceuticals). Pharmacological doses of fohc acid are commonly used as a rescue dose during cancer chemotherapy, in women using oral contraceptives, and alcohoHcs. Several studies have provided evidence that multivitamins or foHc acid (0.8—4 mg/day) supplementation prevent the majority of neural tube defects (101). [Pg.43]

The two structures appear very similar. Poly( 1,2-propylene adipate) has the same basic structure as poly(ethylene adipate), except for a pendant methyl group. This pendant methyl group on the poly( 1,2-propylene adipate) makes a large difference, however. Poly( 1,2-propylene adipate) has no crystalline melting point. Trappe theorizes that the pendant methyl prevents chain packing and therefore, prevents crystallization [42]. [Pg.778]


See other pages where Crystallinity prevention is mentioned: [Pg.629]    [Pg.680]    [Pg.629]    [Pg.680]    [Pg.455]    [Pg.747]    [Pg.945]    [Pg.440]    [Pg.310]    [Pg.20]    [Pg.171]    [Pg.205]    [Pg.311]    [Pg.65]    [Pg.501]    [Pg.406]    [Pg.71]    [Pg.382]    [Pg.520]    [Pg.224]    [Pg.23]    [Pg.165]    [Pg.382]    [Pg.54]    [Pg.228]    [Pg.22]    [Pg.440]    [Pg.442]    [Pg.10]    [Pg.85]    [Pg.310]    [Pg.224]    [Pg.321]    [Pg.183]    [Pg.378]    [Pg.490]    [Pg.118]    [Pg.65]    [Pg.212]   
See also in sourсe #XX -- [ Pg.282 ]




SEARCH



© 2024 chempedia.info