Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Einstein crystal

In general, the phonon density of states g(cn), doi is a complicated fimction which can be directly measured from experiments, or can be computed from the results from computer simulations of a crystal. The explicit analytic expression of g(oi) for the Debye model is a consequence of the two assumptions that were made above for the frequency and velocity of the elastic waves. An even simpler assumption about g(oi) leads to the Einstein model, which first showed how quantum effects lead to deviations from the classical equipartition result as seen experimentally. In the Einstein model, one assumes that only one level at frequency oig is appreciably populated by phonons so that g(oi) = 5(oi-cog) and, for each of the Einstein modes. is... [Pg.357]

Here is the original, many-body potential energy fiinction, while Vq is a sum of single-particle spring potentials proportional to As X —> 0 the system becomes a perfect Einstein crystal, whose free energy... [Pg.2265]

To verify effectiveness of NDCPA we carried out the calculations of absorption spectra for a system of excitons locally and linearly coupled to Einstein phonons at zero temperature in cubic crystal with one molecule per unit cell (probably the simplest model of exciton-phonon system of organic crystals). Absorption spectrum is defined as an imaginary part of one-exciton Green s function taken at zero value of exciton momentum vector... [Pg.453]

Equation 11 gives the conductivity for a particular ion having a transference number, in a crystal, which is the Nemst-Einstein relationship. [Pg.352]

When Max Planck wrote his remarkable paper of 1901, and introduced what Stehle (1994) calls his time bomb of an equation, e = / v , it took a number of years before anyone seriously paid attention to the revolutionary concept of the quantisation of energy the response was as sluggish as that, a few years later, whieh greeted X-ray diffraction from crystals. It was not until Einstein, in 1905, used Planck s concepts to interpret the photoelectric effect (the work for which Einstein was actually awarded his Nobel Prize) that physicists began to sit up and take notice. Niels Bohr s thesis of 1911 which introduced the concept of the quantisation of electronic energy levels in the free atom, though in a purely empirical manner, did not consider the behaviour of atoms assembled in solids. [Pg.131]

A number of bulk simulations have attempted to study the dynamic properties of liquid crystal phases. The simplest property to calculate is the translational diffusion coefficient D, that can be found through the Einstein relation, which applies at long times t ... [Pg.58]

This idea that the heat was transfered by a random walk was used early on by Einstein [21] to calculate the thermal conductance of crystals, but, of course, he obtained numbers much lower than those measured in the experiment. As we now know, crystals at low enough T support well-defined quasiparticles—the phonons—which happen to carry heat at these temperatures. Ironically, Einstein never tried his model on the amorphous solids, where it would be applicable in the / fp/X I regime. [Pg.99]

Dislocation motion in covalent crystals is thermally activated at temperatures above the Einstein (Debye) temperature. The activation energies are well-defined, and the velocities are approximately proportional to the applied stresses (Sumino, 1989). These facts indicate that the rate determining process is localized to atomic dimensions. Dislocation lines do not move concertedly. Instead, sharp kinks form along their lengths, and as these kinks move so do the lines. The kinks are localized at individual chemical bonds that cross the glide plane (Figure 5.8). [Pg.74]

The collective modes of vibration of the crystal introduced in the previous paragraph involve all the atoms, and there is no longer a single vibrational frequency, as was the case in the Einstein model. Different modes of vibration have different frequencies, and in general the number of vibrational modes with frequency between v and v + dv are given by... [Pg.240]

Even though the Einstein and Debye models are not exact, these simple one-parameter models illustrate the properties of crystals and should give reliable estimates of the volume dependence of the vibrational entropy [15]. The entropy is given by the characteristic vibrational frequency and is thus related to some kind of mean interatomic distance or simpler, the volume of a compound. If the unit cell volume is expanded, the average interatomic distance becomes larger and the... [Pg.250]

For an aqueous suspension of crystals to grow, the solute must (a) make its way to the surface by diffusion, (b) undergo desolvation, and (c) insert itself into the lattice structure. The first step involves establishment of a stationary diffusional concentration field around each particle. The elementary step for diffusion has an activation energy (AG ), and a molecule or ion changes its position with a frequency of (kBT/h)exp[-AGl,/kBT]. Einstein s treatment of Brownian motion indicates that a displacement of A will occur within a time t if A equals the square root of 2Dt. Thus, the rate constant for change of position equal to one ionic diameter d will be... [Pg.198]

The important message from Einstein or Debye models is that vibrations of atoms in a crystal contribute to Entropy S and to Heat Capacity C therefore they affect the thermodynamic equilibrium of a crystal by modifying both the Eree energy F, which... [Pg.38]

Here V is the crystal volume, k-p and ks are the isothermal and adiabatic compressibility (i.e., the contraction under pressure), P is the expansivity (expansion/contraction with temperature), Cp and Cv are heat capacities, and 0e,d are the Einstein or Debye Temperatures. Because P is only weakly temperature dependent,... [Pg.40]

Existence of a high degree of orientational freedom is the most characteristic feature of the plastic crystalline state. We can visualize three types of rotational motions in crystals free rotation, rotational diffusion and jump reorientation. Free rotation is possible when interactions are weak, and this situation would not be applicable to plastic crystals. In classical rotational diffusion (proposed by Debye to explain dielectric relaxation in liquids), orientational motion of molecules is expected to follow a diffusion equation described by an Einstein-type relation. This type of diffusion is not known to be applicable to plastic crystals. What would be more appropriate to consider in the case of plastic crystals is collision-interrupted molecular rotation. [Pg.207]

The nature of rotational motion responsible for orientational disorder in plastic crystals is not completely understood and a variety of experimental techniques have been employed to investigate this interesting problem. There can be coupling between rotation and translation motion, the simplest form of the latter being self-diffusion. The diffusion constant D is given by the Einstein relation... [Pg.208]

Since Eq. (5) is equivalent to that of the Einstein model according to which every molecule in the crystal lattice moves freely in the volume Vf of the constant potential [Pg.65]

For solids the matter is not quite so simple, and the more exacting theories of Einstein, Debye, and others show that the atomic heal should be expected to vary with the temperature. According lo Debye, there is a certain characteristic temperature lor each crystalline solid at which its atomic heal should equal 5.67 calories per degree. Einstein s theory expresses this temperature as hv /k. in which h is Planck s constant, k is Bolizmanns constant, and r, is a frequency characteristic of ihe atom in question vibrating in the crystal lattice. [Pg.511]


See other pages where Einstein crystal is mentioned: [Pg.206]    [Pg.659]    [Pg.206]    [Pg.659]    [Pg.393]    [Pg.2265]    [Pg.443]    [Pg.444]    [Pg.65]    [Pg.104]    [Pg.238]    [Pg.1143]    [Pg.248]    [Pg.212]    [Pg.518]    [Pg.213]    [Pg.243]    [Pg.19]    [Pg.3]    [Pg.2]    [Pg.133]    [Pg.418]    [Pg.154]    [Pg.37]    [Pg.37]    [Pg.39]    [Pg.41]    [Pg.36]    [Pg.178]    [Pg.31]    [Pg.435]   
See also in sourсe #XX -- [ Pg.340 ]




SEARCH



Einstein crystal model

Field-Theoretic Reference State The Einstein Crystal of Grid-Based Fields

© 2024 chempedia.info