Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cross-linking in gels

Gels may be prepared using either chemical or physical cross-Unks. Physical cross-links in gels may involve dipole-dipole interactions, traces of crystallinity, multiple helices, and so on, and thus vary greatly with the number and strength of the bonds. The number of physical cross-links present in a given system depends on time, pressure, and temperature. Many such gels are ther-moreversible that is, the bonds break at elevated temperature and reform at lower temperatures. [Pg.474]

An alternative postulate to that of Gemgross is that the initial formation of a gel is due to associations between chains in pairs rather than in bundles that the cross-links in gels when first set, and particularly in dilute gels, are single rather than multiple. Further lateral association between paired chains could then eventually build up crystallites. This hypothesis would account for the existence (ff gels in which no sharp X-ray diffractions are detected. [Pg.42]

Cross-linked macromolecular gels have been prepared by Eriedel-Crafts cross-linking of polystyrene with a dihaloaromatic compound, or Eriedel-Crafts cross-linking of styrene—chloroalkyl styrene copolymers. These polymers in their sulfonated form have found use as thermal stabilizers, especially for use in drilling fluids (193). Cross-linking polymers with good heat resistance were also prepared by Eriedel-Crafts reaction of diacid haUdes with haloaryl ethers (194). [Pg.563]

During the press operation, which is actually a form of compression mol ding, the resin-treated laminate pHes are heated under pressure and the resins cured. The initial heating phases cause the resin to melt and flow into voids in the reinforcing ply and bond the individual pHes together. The appHed heat simultaneously causes the resin to polymerize and eventually to cross-link or gel. Therefore, resin viscosity reaches a minimum during the press cycle. This is the point at which the curing process becomes dominant over the melt flow process. Dynamic mechanical and dielectric analyses (11) are excellent tools for study of this behavior. [Pg.534]

Sephadex. Other carbohydrate matrices such as Sephadex (based on dextran) have more uniform particle sizes. Their advantages over the celluloses include faster and more reproducible flow rates and they can be used directly without removal of fines . Sephadex, which can also be obtained in a variety of ion-exchange forms (see Table 15) consists of beads of a cross-linked dextran gel which swells in water and aqueous salt solutions. The smaller the bead size, the higher the resolution that is possible but the slower the flow rate. Typical applications of Sephadex gels are the fractionation of mixtures of polypeptides, proteins, nucleic acids, polysaccharides and for desalting solutions. [Pg.23]

In relation to separation of nucleotides, Hoffman61 found that adenine nucleotides interacted most strongly with cycloheptaamylose, presumably by inclusion of the base within the cavity of cyclodextrin. When epichlorohydrin-cross-linked cycloheptaamylose gel was used as a stationary phase for nucleic acid chromatography, adenine-containing compounds were retarded most strongly. [Pg.151]

There are two types of stationary phases commonly used in exclusion chromatography silica gel and micro-reticulated cross-linked polystyrene gels. A third type of exclusion media is comprised of the Dextran gels. Dextran gels are produced by the action of certain bacteria on a sucrose substrate. They consist of framework of glucose units that can form a gel in aqueous solvents that have size exclusion properties. Unfortunately the gels are mechanically weak and thus, cannot tolerate the high pressures necessary for HPLC and, as a consequence, are of very limited use to the analyst. [Pg.283]

The structure of these gel-like systems of micelles is very different from that of conventional electrophoresis media made from chemically and physically cross-linked polymers of polyacrylamide and agarose [75], The absence of chemical or physical cross-links in the Pluronic gel-like phases may allow a larger degree of freedom for macromolecular transport around the obstacles that make up the medium than occurs in conventional electrophoresis media. [Pg.542]

Dusek, K, Diffusion Control in the Kinetics of Cross-Linking, Polymer Gels and Networks 4, 383, 1996. [Pg.611]

The elastic contribution to Eq. (5) is a restraining force which opposes tendencies to swell. This constraint is entropic in nature the number of configurations which can accommodate a given extension are reduced as the extension is increased the minimum entropy state would be a fully extended chain, which has only a single configuration. While this picture of rubber elasticity is well established, the best model for use with swollen gels is not. Perhaps the most familiar model is still Flory s model for a network of freely jointed, random-walk chains, cross-linked in the bulk state by connecting four chains at a point [47] ... [Pg.507]

Fig. 3.7 Schematic drawings demonstrating the main features of two-stage (A) and one-stage (B) procedures leading to a difference in the morphology of the fabricated materials. (A) Sol nanoparticles initially prepared in the first stage (1, see also Figure 3.3) can self-assemble into a three-dimensional network when they are in direct contact with each other. Forthis reason, a gel formed after cross-linking (sol-gel transition) has a smaller volume (2). (B) The initial stage (1) is represented by a solution of entangled biopolymer macromolecules. The... Fig. 3.7 Schematic drawings demonstrating the main features of two-stage (A) and one-stage (B) procedures leading to a difference in the morphology of the fabricated materials. (A) Sol nanoparticles initially prepared in the first stage (1, see also Figure 3.3) can self-assemble into a three-dimensional network when they are in direct contact with each other. Forthis reason, a gel formed after cross-linking (sol-gel transition) has a smaller volume (2). (B) The initial stage (1) is represented by a solution of entangled biopolymer macromolecules. The...
The structure of hydrogels that do not contain ionic moieties can be analyzed by the Flory Rehner theory (Flory and Rehner 1943a). This combination of thermodynamic and elasticity theories states that a cross-linked polymer gel which is immersed in a fluid and allowed to reach equilibrium with its surroundings is subject only to two opposing forces, the thermodynamic force of mixing and the retractive force of the polymer chains. At equilibrium, these two forces are equal. Equation (1) describes the physical situation in terms of the Gibbs free energy. [Pg.79]


See other pages where Cross-linking in gels is mentioned: [Pg.540]    [Pg.78]    [Pg.251]    [Pg.540]    [Pg.78]    [Pg.251]    [Pg.652]    [Pg.658]    [Pg.390]    [Pg.249]    [Pg.431]    [Pg.23]    [Pg.44]    [Pg.75]    [Pg.187]    [Pg.169]    [Pg.91]    [Pg.85]    [Pg.258]    [Pg.525]    [Pg.531]    [Pg.532]    [Pg.590]    [Pg.393]    [Pg.219]    [Pg.736]    [Pg.401]    [Pg.259]    [Pg.705]    [Pg.479]    [Pg.500]    [Pg.530]    [Pg.544]    [Pg.174]    [Pg.25]    [Pg.99]    [Pg.311]    [Pg.315]    [Pg.362]    [Pg.30]    [Pg.157]   
See also in sourсe #XX -- [ Pg.307 , Pg.308 , Pg.361 ]




SEARCH



Gel cross-linking

Gels Cross-Linked in Solution

In gels

© 2024 chempedia.info