Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cross-linking catalysis

Substituted Phenols. Phenol itself is used in the largest volume, but substituted phenols are used for specialty resins (Table 2). Substituted phenols are typically alkylated phenols made from phenol and a corresponding a-olefin with acid catalysts (13). Acidic catalysis is frequendy in the form of an ion-exchange resin (lER) and the reaction proceeds preferentially in the para position. For example, in the production of /-butylphenol using isobutylene, the product is >95% para-substituted. The incorporation of alkyl phenols into the resin reduces reactivity, hardness, cross-link density, and color formation, but increases solubiHty in nonpolar solvents, dexibiHty, and compatibiHty with natural oils. [Pg.292]

Catalysis. Platinum-catalyzed hydrosilation is used for cross-linking siUcone polymers and for the preparation of functionally substituted silane monomers (250). The most widely used catalyst is chloroplatinic acid (Spier s catalyst), H2PtCl3. Other compounds that catalyze the reaction include Pt(Il)... [Pg.184]

The free radicals initially formed are neutralized by the quinone stabilizers, temporarily delaying the cross-linking reaction between the styrene and the fumarate sites in the polyester polymer. This temporary induction period between catalysis and the change to a semisoHd gelatinous mass is referred to as gelation time and can be controUed precisely between 1—60 min by varying stabilizer and catalyst levels. [Pg.317]

A method for the polymerization of polysulfones in nondipolar aprotic solvents has been developed and reported (9,10). The method reUes on phase-transfer catalysis. Polysulfone is made in chlorobenzene as solvent with (2.2.2)cryptand as catalyst (9). Less reactive crown ethers require dichlorobenzene as solvent (10). High molecular weight polyphenylsulfone can also be made by this route in dichlorobenzene however, only low molecular weight PES is achievable by this method. Cross-linked polystyrene-bound (2.2.2)cryptand is found to be effective in these polymerizations which allow simple recovery and reuse of the catalyst. [Pg.462]

Organic titanates perform three important functions for a variety of iadustrial appHcations. These are (/) catalysis, especially polyesterification and olefin polymerization (2) polymer cross-linking to enhance performance properties and (J) Surface modification for adhesion, lubricity, or pigment dispersion. [Pg.161]

Polycondensation pol5mers, like polyesters or polyamides, are obtained by condensation reactions of monomers, which entail elimination of small molecules (e.g. water or a hydrogen halide), usually under acid/ base catalysis conditions. Polyolefins and polyacrylates are typical polyaddition products, which can be obtained by radical, ionic and transition metal catalyzed polymerization. The process usually requires an initiator (a radical precursor, a salt, electromagnetic radiation) or a catalyst (a transition metal). Cross-linked polyaddition pol5mers have been almost exclusively used so far as catalytic supports, in academic research, with few exceptions (for examples of metal catalysts on polyamides see Ref. [95-98]). [Pg.209]

Costes, D., Wehtje, E. and Adlercreutz, P. (2001) Cross-linked crystals of hydroxynitrile lyase as catalyst for the synthesis of optically active cyanohydrins. Journal of Molecular Catalysis B-Enzymatic, 11, 607-612. [Pg.122]

The gel point is defined as the point at which the entire solid mass becomes interconnected. The physical characteristics of the gel network depends upon the size of particles and extent of cross-linking prior to gelation. Acid-catalysis leads to a more polymeric form of gel with linear chains as intermediates. Base-catalysis yields colloidal gels where gelation occurs by cross-linking of the colloidal particles. [Pg.302]

Typical systems. A considerable number of immobilized polyether systems have been synthesized both for phase transfer catalysis as just discussed and for use in a number of analytical applications. Such immobilized systems are generally synthesized by either copolymerization of suitably functionalized macrocycles in the presence of cross-linking agents or by appending functionalized macrocycles to existing polymeric substrates. Structures (184)-(186) give examples of different... [Pg.110]

The catalysis of this reaction by grafted copolymer in comparison with well-known catalysts such as /(-toluene sulfoacid, and cross-linked sulfonated polystyrene was investigated. The yield of mono- and disubstituted products is shown in Table 7.2. The specific catalytic activity of grafted copolymers is 100 times or even higher than the same values for the other catalysts. This also can be related to the much higher level of acidity of perfluoroalkyl sulfoacid. [Pg.98]

With a view to producing catalysts that can easily be removed from reaction products, typical phase-transfer catalysts such as onium salts, crown ethers, and cryptands have been immobilized on polymer supports. The use of such catalysts in liquid-liquid and liquid-solid two-phase systems has been described as triphase catalysis (Regen, 1975, 1977). Cinquini et al. (1976) have compared the activities of catalysts consisting of ligands bound to chloromethylated polystyrene cross-linked with 2 or 4% divinylbenzene and having different densities of catalytic sites ([126], [127], [ 132]—[ 135]) in the... [Pg.333]

The reactions of intramolecular cross-linking is a rather poorly investigated area in the field of macro-molecular reactions. However, the problems of regularities of such processes are related to such important problems of polymer chemistry as chemical modification of polymers, networks formation, sorption of low molecular reagents by polymers, intramolecular catalysis, conformational transitions and so on. In spite of the great importance of the study of regularities of cross-linking reactions, the experimental and theoretical analysis of such processes is complicated by many difficulties. ... [Pg.25]

The kinetic problem for the intramolecular cross-linking reactions in general form was not yet solved. Only some particular cases, i.e. the cvclization of macromolecules, the intramolecular catalysis and diffusion-controlled collision of two reactive groups were studied theoretically bv Xorawetz, Sisido and Fixman... [Pg.26]

The Scission of Polysulfide Cross-Links in Rubber Particles through Phase-Transfer Catalysis... [Pg.155]


See other pages where Cross-linking catalysis is mentioned: [Pg.233]    [Pg.233]    [Pg.23]    [Pg.219]    [Pg.399]    [Pg.13]    [Pg.261]    [Pg.138]    [Pg.469]    [Pg.86]    [Pg.315]    [Pg.316]    [Pg.411]    [Pg.298]    [Pg.208]    [Pg.209]    [Pg.226]    [Pg.228]    [Pg.128]    [Pg.195]    [Pg.46]    [Pg.169]    [Pg.146]    [Pg.59]    [Pg.122]    [Pg.220]    [Pg.121]    [Pg.276]    [Pg.362]    [Pg.366]    [Pg.1444]    [Pg.257]    [Pg.257]    [Pg.158]   
See also in sourсe #XX -- [ Pg.189 ]




SEARCH



Catalysis silicone polymers, cross linking

Cross-links catalysis

Cross-links catalysis

© 2024 chempedia.info