Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Critical micelle concentration hydrophobic groups

Further addition of fatty acid eventually results in the formation of micelles. Micelles formed from an amphipathic lipid in water position the hydrophobic tails in the center of the lipid aggregation with the polar head groups facing outward. Amphipathic molecules that form micelles are characterized by a unique critical micelle concentration, or CMC. Below the CMC, individual lipid molecules predominate. Nearly all the lipid added above the CMC, however, spontaneously forms micelles. Micelles are the preferred form of aggregation in water for detergents and soaps. Some typical CMC values are listed in Figure 9.3. [Pg.261]

One of the most important characteristics of the emulsifier is its CMC, which is defined as the critical concentration value below which no micelle formation occurs. The critical micelle concentration of an emulsifier is determined by the structure and the number of hydrophilic and hydrophobic groups included in the emulsifier molecule. The hydrophile-lipophile balance (HLB) number is a good criterion for the selection of proper emulsifier. The HLB scale was developed by W. C. Griffin [46,47]. Based on his approach, the HLB number of an emulsifier can be calculated by dividing... [Pg.196]

For an a-helical fraction fH = 0,5 30% methanol, 20% ethanol, 15% i-propanol or 10% trifluoroethanol are necessary. Trifluoroethanol like perfluorinated alcohols, e.g. hexafluoroisopropanol is characterised on the hand by a strong acidic proton at the OG-group due to the —1-effect of the fluor atoms. On the other hand fluorocarbons are more hydrophobic than the hydrocarbons which is mainly due to the larger surface of the F compared with H. For this reason the critical micelle concentration of perfluorinated detergents is much lower than that of the corresponding hydrocarbon compounds. It was found that C4F7-derivatives act as detergents... [Pg.20]

In highly diluted solutions the surfactants are monodispersed and are enriched by hydrophil-hydrophobe-oriented adsorption at the surface. If a certain concentration which is characteristic for each surfactant is exceeded, the surfactant molecules congregate to micelles. The inside of a micelle consists of hydrophobic groups whereas its surface consists of hydrophilic groups. Micelles are dynamic entities that are in equilibrium with their surrounded concentration. If the solution is diluted and remains under the characteristic concentration, micelles dissociate to single molecules. The concentration at which micelle formation starts is called critical micelle concentration (cmc). Its value is characteristic for each surfactant and depends on several parameters [189-191] ... [Pg.88]

A spiropyran compound bearing a pyridinium group and a long alkyl chain behaves as a surfactant. The components shown in Scheme 1 exhibit reverse photochromism in polar solvents. The colored merocyanine form is more stable than the spiropyran form in the dark. Upon photoirradiation at A>510 nm, the polar merocyanine form is converted to the hydrophobic spiropyran form so that the CMC (critical micelle concentration) of the surfactant decreases. Consequently, when the initial concentration is set between the CMC of the two forms, photoirradiation induces a sudden formation of micelles at a certain conversion to the spiropyran form corresponding to the CMC of the mixed micelle of the two forms. [Pg.212]

A wide structural variation is possible within each class of molecules because both the length of the hydrophobic portion and the nature of the hydrophilic head group, as well as its position along the backbone, may be varied. The properties of the aggregates formed from these surfactants and the conditions under which they are formed depends on all these parameters. As the concentration of the surfactant in an aqueous solution is increased, many of the chemical and physical properties of the solution change rather abruptly (but continuously) over a concentration range known as the critical micelle concentration (CMC). [Pg.160]

Numerous books and reviews have been published on this subject (e.g. Fendler and Fendler, 1975 Mittal, 1977). Therefore, the structural characteristics of micelles will be presented only to the extent that is necessary for the subsequent discussions. These surfactants form micelles at concentrations above the cmc (critical micelle concentration). Such micelles have average radii of 12-30 A and contain 20-100 surfactant molecules. The hydrophobic part of the aggregate forms the core of the micelle while the polar head groups are located at the micellar surface. Micelles at concentrations close to their cmc are assumed to possess spherical and ellipsoidal structures (Tanford, 1973, 1978). A schematic representation of a spherical ionic micelle is shown in Fig. 1. [Pg.437]

Several variations in chemical constitution, which lead to a depression of the Krafft-Point (for example, branching of the hydrophobic part of the molecule), frequently result in diminished hydrophobicity of the molecule. At constant molecular weight, the critical micelle concentration (Cj.) is shifted with increased branching to higher concentrations, the surface activity diminishes, the tendency to adsorb at hydrophobic interfaces decreases, etc. (j, 14, 15). Therefore, the nature of the oxyethylene groups in aTkyl ether sulfates is of major importance. [Pg.8]

Washing and Cleaning Action. The properties of alkyl ether sulfates, due to the good solubility and the special hydrophilic/hydrophobic properties of the molecule, are of particular practical interest. From the investigations described in sections 2 and 3, it can be concluded that, in addition to the decrease in the Krafft Point, favorable properties for practical applications can be expected as a result of the inclusion of the oxyethylene groups into the hydrophobic part of the molecule. As is true for other anionic surfactants, the electrical double layer will be compressed by the addition of multivalent cations. By this means, the adsorption at the interface is increased, the surface activity is raised, and, furthermore, the critical micelle concentration decreased. In the case of the alkyl ether sulfates, however these effects can be obtained without encountering undesirable salting out effects. [Pg.14]

The structure and properties of water soluble dendrimers, such as 46, is, in itself, a very promising area of research due to their similarity with natural micellar systems. As can be seen from the two-dimensional representation of 46 the structure contains a hydrophobic inner core surrounded by a hydrophilic layer of carboxylate groups (Fig. 12). However these dendritic micelles differ from traditional micelles in that they are static, covalently bound structures instead of dynamic associations of individual molecules. A number of studies have exploited this unique feature of dendritic micelles in the design of novel recyclable solubilization and extraction systems that may find great application in the recovery of organic materials from aqueous solutions [84,86-88]. These studies have also shown that dendritic micelles can solubilize hydrophobic molecules in aqueous solution to the same, if not greater, extent than traditional SDS micelles. The advantages of these dendritic micelles are that they do not suffer from a critical micelle concentration and therefore display solvation ability at nanomolar... [Pg.149]

In MEKC, the supporting electrolyte medium contains a surfactant at a concentration above its critical micelle concentration (CMC). The surfactant self-aggregates in the aqueous medium and forms micelles whose hydrophilic head groups and hydrophobic tail groups form a nonpolar core into which the solutes can partition. The micelles are anionic on their surface, and they migrate in the opposite direction to the electroosmotic flow under the applied current. The differential partitioning of neutral molecules between the buffered aqueous mobile phase and the micellar pseudostationary phase is the sole basis for separation as the buffer and micelles form a two-phase system, and the analyte partitions between them (Smyth and McClean 1998). [Pg.167]

A micelle is an aggregate of surfactants. In water, the hydrophobic tails form clusters that are, in effect, little oil drops insulated from the aqueous phase by the ionic head groups. At low concentration, surfactant molecules do not form micelles. When their concentration exceeds the critical micelle concentration, spontaneous aggregation into micelles occurs.8 Isolated surfactant molecules exist in equilibrium with micelles. Nonpolar organic solutes... [Pg.598]

Takahashi et al.67) prepared ionene-tetrahydrofuran-ionene (ITI) triblock copolymers and investigated their surface activities. Surface tension-concentration curves for salt-free aqueous solutions of ITI showed that the critical micelle concentration (CMC) decreased with increasing mole fraction of tetrahydrofuran units in the copolymer. This behavior is due to an increase in hydrophobicity. The adsorbance and the thickness of the adsorbed layer for various ITI at the air-water interface were measured by ellipsometry. The adsorbance was also estimated from the Gibbs adsorption equation extended to aqueous polyelectrolyte solutions. The measured and calculated adsorbances were of the same order of magnitude. The thickness of the adsorbed layer was almost equal to the contour length of the ionene blocks. The intramolecular electrostatic repulsion between charged groups in the ionene blocks is probably responsible for the full extension of the... [Pg.59]

The hydrogen bonding between the head group of the surfactant and water is very sensitive to temperature for this reason d/u /dT is expected to be larger at low temperatures. Because the hydrophobicity of the surfactant increases with temperature, dC wl/dT < 0. In reality, the critical micelle concentration passes through a minimum with increasing temperature [20]. The minimum is, however, located around 55°C for nonionic surfactants. As a result, the interfacial tension is expected to pass through a minimum. [Pg.188]


See other pages where Critical micelle concentration hydrophobic groups is mentioned: [Pg.427]    [Pg.149]    [Pg.442]    [Pg.42]    [Pg.6]    [Pg.158]    [Pg.139]    [Pg.271]    [Pg.170]    [Pg.21]    [Pg.202]    [Pg.74]    [Pg.260]    [Pg.14]    [Pg.25]    [Pg.11]    [Pg.83]    [Pg.166]    [Pg.223]    [Pg.866]    [Pg.30]    [Pg.191]    [Pg.249]    [Pg.161]    [Pg.171]    [Pg.232]    [Pg.5]    [Pg.392]    [Pg.14]    [Pg.1]    [Pg.336]    [Pg.124]    [Pg.3]    [Pg.411]    [Pg.1270]   
See also in sourсe #XX -- [ Pg.131 , Pg.136 , Pg.138 ]




SEARCH



Critical concentration

Critical group

Critical micell concentration

Critical micelle concentration

Critical micelle concentration micellization

Critical micellization concentrations

Hydrophobic groups

Micelle concentration

Micelles critical micelle concentration

© 2024 chempedia.info