Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compression Creep

The equivalence for creep compression of altering pressure, dwell time, moisture, or temperature is explicity expressed in the argument p. [Pg.395]

Testing of rigid cellular materials — Time-depending creep compression test underheat (withdrawn)... [Pg.393]

Membrane Pinhole formation crossover Fuel loss Creep, /(compression)... [Pg.229]

Creep Compressive creep modulus Mpa D695 186 After 100 h at 0.6895 MPa 42,59... [Pg.737]

The governing equations used in this case are identical to Equations (4.1) and (4.4) describing the creeping flow of an incompressible generalized Newtonian fluid. In the air-filled sections if the pressure exceeds a given threshold the equations should be switched to the following set describing a compressible flow... [Pg.143]

Compression Set. The compression set is an important property ki cushioning appHcations. It has been studied for polyurethane foams (185,186), and has been discussed ki reviews (32,60,156). Compression set has been described as flex fatigue and creep as weU. [Pg.413]

Excellent antifriction properties and good hardness (qv) make lead—antimony—tin alloys suitable for journal bearings. The alloys contain 9—15 wt % antimony and 1—20 wt % tin and may also contain copper and arsenic, which improve compression, fatigue, and creep strength important in bearings. Lead—antimony—tin bearing alloys are Hsted in ASTM B23-92 (7). [Pg.57]

Mechanical properties of plastics can be determined by short, single-point quaUty control tests and longer, generally multipoint or multiple condition procedures that relate to fundamental polymer properties. Single-point tests iaclude tensile, compressive, flexural, shear, and impact properties of plastics creep, heat aging, creep mpture, and environmental stress-crackiag tests usually result ia multipoint curves or tables for comparison of the original response to post-exposure response. [Pg.153]

ASTM D2990, a. Test Methods for Tensile, Compressive andFlexural Creep and Creep Rmpture of Plastics, Vol. 8.02, ASTM, Philadelphia, Pa., 1993. [Pg.159]

The Imass Dynastat (283) is a mechanical spectrometer noted for its rapid response, stable electronics, and exact control over long periods of time. It is capable of making both transient experiments (creep and stress relaxation) and dynamic frequency sweeps with specimen geometries that include tension-compression, three-point flexure, and sandwich shear. The frequency range is 0.01—100 H2 (0.1—200 H2 optional), the temperature range is —150 to 250°C (extendable to 380°C), and the modulus range is 10" —10 Pa. [Pg.199]

Rheometric Scientific markets several devices designed for characterizing viscoelastic fluids. These instmments measure the response of a Hquid to sinusoidal oscillatory motion to determine dynamic viscosity as well as storage and loss moduH. The Rheometric Scientific line includes a fluids spectrometer (RFS-II), a dynamic spectrometer (RDS-7700 series II), and a mechanical spectrometer (RMS-800). The fluids spectrometer is designed for fairly low viscosity materials. The dynamic spectrometer can be used to test soHds, melts, and Hquids at frequencies from 10 to 500 rad/s and as a function of strain ampHtude and temperature. It is a stripped down version of the extremely versatile mechanical spectrometer, which is both a dynamic viscometer and a dynamic mechanical testing device. The RMS-800 can carry out measurements under rotational shear, oscillatory shear, torsional motion, and tension compression, as well as normal stress measurements. Step strain, creep, and creep recovery modes are also available. It is used on a wide range of materials, including adhesives, pastes, mbber, and plastics. [Pg.202]

An account of the mechanism for creep in solids placed under a compressive hydrostatic suess which involves atom-vacancy diffusion only is considered in Nabano and Hemirg s (1950) volume diffusion model. The counter-movement of atoms and vacancies tends to relieve the effects of applied pressure, causing extension normal to the applied sU ess, and sluinkage in the direction of the applied sU ess, as might be anticipated from Le Chatelier s principle. The opposite movement occurs in the case of a tensile sU ess. The analysis yields the relationship... [Pg.181]

Creep tests require careful temperature control. Typically, a specimen is loaded in tension or compression, usually at constant load, inside a furnace which is maintained at a constant temperature, T. The extension is measured as a function of time. Figure 17.4 shows a typical set of results from such a test. Metals, polymers and ceramics all show creep curves of this general shape. [Pg.173]

In compression, of course, the strength is greater. Most ceramics are about fifteen times stronger in compression than in tension, for the reasons given in Chapter 17. For ice the factor is smaller, typically six, probably because the coefficient of friction across the crack faces (which rub together when the ceramic is loaded in compression) is exceptionally low. At stresses below 6 MPa, ice loaded in compression deforms by creep at 6 MPa it crushes, and this is the maximum stress it can carry. [Pg.305]

Type of stress. A uniaxial tensile creep test would not be expected to give the required data if the designer was concerned with torsional or compressive creep. [Pg.200]

As with other plastics materials, temperature has a considerable effect on mechanical properties. This is clearly illustrated in Figure 13.5 in the case of stress to break and elongation at break. Even at 20°C unfilled PTFE has a measurable creep with compression loads as low as 3001bf/in (2.1 MPa). [Pg.367]

For convenience so far we have referred generally to creep curves in the above examples. It has been assumed that one will be using the conect curves for the particular loading configuration. In practice, creep curves obtained under tensile and flexural loading conditions are quite widely available. Obviously it is important to use the creep curves which are appropriate to the particular loading situation. Occasionally it is possible to obtain creep curves for compressive or shear loading but these are less common. [Pg.57]

It should also be noted that in this case the material was loaded in compre-sion whereas the tensile creep curves were used. The vast majority of creep data which is available is for tensile loading mainly because this is the simplest and most convenient test method. However, it should not be forgotten that the material will behave differently under other modes of deformation. In compression the material deforms less than in tension although the efrect is small for strains up to 0.5%. If no compression data is available then the use of tensile data is permissible because the lower modulus in the latter case will provide a conservative design. [Pg.61]

Throne has reported that the relationship between foam modulus and density can be generalised to other properties such as tensile strength, fatigue strength, creep properties as well as shear and compression modulus. Thus if X is the general material property then... [Pg.68]


See other pages where Compression Creep is mentioned: [Pg.255]    [Pg.222]    [Pg.41]    [Pg.246]    [Pg.371]    [Pg.255]    [Pg.222]    [Pg.41]    [Pg.246]    [Pg.371]    [Pg.854]    [Pg.313]    [Pg.112]    [Pg.55]    [Pg.156]    [Pg.153]    [Pg.153]    [Pg.346]    [Pg.192]    [Pg.200]    [Pg.241]    [Pg.269]    [Pg.510]    [Pg.290]    [Pg.276]    [Pg.481]    [Pg.481]    [Pg.481]    [Pg.482]    [Pg.673]    [Pg.32]    [Pg.515]    [Pg.784]    [Pg.877]    [Pg.469]   
See also in sourсe #XX -- [ Pg.395 ]




SEARCH



© 2024 chempedia.info