Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cracking titanium

Fig. 5. Comparison of crack growth rates of titanium aluminides, composites, and IN-100 tests at 650°C, R = 0.1, v = 0.2 Hz except for the composite... Fig. 5. Comparison of crack growth rates of titanium aluminides, composites, and IN-100 tests at 650°C, R = 0.1, v = 0.2 Hz except for the composite...
Titanium is resistant to nitric acid from 65 to 90 wt % and ddute acid below 10 wt %. It is subject to stress—corrosion cracking for concentrations above 90 wt % and, because of the potential for a pyrophoric reaction, is not used in red filming acid service. Tantalum exhibits good corrosion resistance to nitric acid over a wide range of concentrations and temperatures. It is expensive and typically not used in conditions where other materials provide acceptable service. Tantalum is most commonly used in appHcations where the nitric acid is close to or above its normal boiling point. [Pg.45]

Titanium does not stress-crack in environments that cause stress-cracking in other metal alloys, eg, boiling 42% MgCl2, NaOH, sulfides, etc. Some of the aluminum-rich titanium alloys are susceptible to hot-salt stress-cracking. However, this is a laboratory observation and has not been confirmed in service. Titanium stress-cracks in methanol containing acid chlorides or sulfates, red Aiming nitric acid, nitrogen tetroxide, and trichloroethylene. [Pg.104]

N. Walker and C. J. Beevers, A Fatigue Crack Closure Mechanism in Titanium , Fatigue of Engineering Materials and Structures, Wo[. 1, 1979, pp. 135 148. [Pg.533]

Steel is the most common constructional material, and is used wherever corrosion rates are acceptable and product contamination by iron pick-up is not important. For processes at low or high pH, where iron pick-up must be avoided or where corrosive species such as dissolved gases are present, stainless steels are often employed. Stainless steels suffer various forms of corrosion, as described in Section 53.5.2. As the corrosivity of the environment increases, the more alloyed grades of stainless steel can be selected. At temperatures in excess of 60°C, in the presence of chloride ions, stress corrosion cracking presents the most serious threat to austenitic stainless steels. Duplex stainless steels, ferritic stainless steels and nickel alloys are very resistant to this form of attack. For more corrosive environments, titanium and ultimately nickel-molybdenum alloys are used. [Pg.898]

This example of aluminium illustrates the importance of the protective him, and hlms that are hard, dense and adherent will provide better protection than those that are loosely adherent or that are brittle and therefore crack and spall when the metal is subjected to stress. The ability of the metal to reform a protective him is highly important and metals like titanium and tantalum that are readily passivated are more resistant to erosion-corrosion than copper, brass, lead and some of the stainless steels. There is some evidence that the hardness of a metal is a signihcant factor in resistance to erosion-corrosion, but since alloying to increase hardness will also affect the chemical properties of the alloy it is difficult to separate these two factors. Thus althou copper is highly susceptible to impingement attack its resistance increases with increase in zinc content, with a corresponding increase in hardness. However, the increase in resistance to attack is due to the formation of a more protective him rather than to an increase in hardness. [Pg.192]

Resistance to stress-corrosion cracking Commercially pure titanium is very resistant to stress-corrosion cracking in those aqueous environments that usually constitute a hazard for this form of failure, and with one or two exceptions, detailed below, the hazard only becomes significant when titanium is alloyed, for example, with aluminium. This latter aspect is discussed in Section 8.5 under titanium alloys. [Pg.873]

For commercially pure titanium, the specific environments to be avoided are pure methanol and red, fuming nitric acid " , although in both environments the presence of 2% of water will inhibit cracking. On the other hand, the presence of either bromine or iodine in methanol aggravates the effect. When it does occur, stress-corrosion cracking of commercially pure titanium is usually intergranular in habit. [Pg.873]

The stress-corrosion cracking hazard for titanium alloys containing aluminium is significantly higher than that obtaining for commercially pure titanium, and in addition to stress-corrosion cracking in methanol and red... [Pg.879]

Sandoz, G., In Stress Corrosion Cracking in High Strength Steels and in Titanium and Aluminium Alloys, Ed. B.F. Brown, Naval Research Laboratory, Washington, pp. 79-145, (1972)... [Pg.1257]


See other pages where Cracking titanium is mentioned: [Pg.20]    [Pg.20]    [Pg.990]    [Pg.347]    [Pg.347]    [Pg.486]    [Pg.545]    [Pg.122]    [Pg.130]    [Pg.398]    [Pg.120]    [Pg.120]    [Pg.5]    [Pg.124]    [Pg.46]    [Pg.396]    [Pg.101]    [Pg.105]    [Pg.106]    [Pg.371]    [Pg.446]    [Pg.274]    [Pg.248]    [Pg.983]    [Pg.87]    [Pg.96]    [Pg.21]    [Pg.435]    [Pg.907]    [Pg.53]    [Pg.138]    [Pg.144]    [Pg.790]    [Pg.1080]    [Pg.1145]    [Pg.1161]    [Pg.1171]    [Pg.1182]    [Pg.1244]   
See also in sourсe #XX -- [ Pg.107 ]




SEARCH



Cracking titanium aluminides

Environmentally Enhanced Fatigue Crack Growth in Titanium Alloys

Fatigue crack growth titanium alloys

Sustained load cracking, titanium

Titanium alloys in stress-corrosion cracking

Titanium alloys stress-corrosion cracking

Titanium stress-corrosion cracking

© 2024 chempedia.info