Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Covalency sites

From all of this discussion it is apparent that, as Manning (1979) said, the binding between counterion and polyion can range from atmospheric to covalent site binding. [Pg.70]

Stopped flow kinetic measurements indicate that when two aqueous solutions, one containing BaPDE and the other DNA, are mixed rapidly, a non-covalent site I-type complex is formed within 5 ms or less (11). [Pg.115]

Spectroscopies are also used to experimentally probe transient species along a reaction coordinate, where often the sample has been rapidly freeze quenched to trap intermediates. An important theme in bioinorganic chemistry is that active sites often exhibit unique spectroscopic features, compared to small model complexes with the same metal ion.8 These unusual spectroscopic features reflect novel geometric and electronic structures available to the metal ion in the protein environment. These unique spectral features are low-energy intense absorption bands and unusual spin Hamiltonian parameters. We have shown that these reflect highly covalent sites (i.e., where the metal d-orbitals have significant ligand character) that can activate the metal site for reactivity.9... [Pg.1]

The foregoing discussion has been couched in terms of the electronic structure of minerals and its consequent effects on absorbate reactions. Redox, aprotic acid, and covalent site types can all be considered to operate by electron/hole transfers, whether this be singly or in pairs, uni- or equi-lateral, partial or complete. Expressed in these terms, it is clear that these canonical site types, and reactions produced by them, represent limiting cases. The boundary lines between them must grow very fuzzy if additional electron delocalization is provided by excitation of either reactant or catalyst. Because of the electronic energy structure of minerals and their... [Pg.20]

Three types of solvent or solute delocalization have now been examined, as summarized in Table III for three different adsorbent types (four, if we distinguish Cig-deactivated silica from silica). The theoretical requirements on the configuration and density of adsorption sites were discussed earlier (Section II,B) for a given type of localization/delocalization to be possible. In each case the nature of adsorption sites is fairly well understood for the four adsorbents of Table III, as disucssed in Ref. / and 17 and shown in Fig. 14. Thus, in the case of alumina, surface hydroxyls do not function as adsorption sites. Although surface oxide atoms are capable of interacting with acidic adsorbate molecules (see below), in most cases the adsorbate will interact with a cationic center (either aluminum atom or lattice defect) in the next layer. As a result, we can say that in most cases adsorption sites on alumina are buried within the surface, rather than being exposed for covalent site-adsorbate interaction. These sites are also rigidly positioned within the surface. Finally, the... [Pg.193]

However, highly methylated arsenic compounds [e.g. arsenobetaine (10)] have no sites to react with sulfhydryl groups because all four covalent sites of arsenic are fully occupied... [Pg.736]

Covalent. Formed by most of the non-metals and transition metals. This class includes such diverse compounds as methane, CH4 and iron carbonyl hydride, H2Fe(CO)4. In many compounds the hydrogen atoms act as bridges. Where there are more than one hydride sites there is often hydrogen exchange between the sites. Hydrogens may be inside metal clusters. [Pg.208]

In the case of chemisoriDtion this is the most exothennic process and the strong molecule substrate interaction results in an anchoring of the headgroup at a certain surface site via a chemical bond. This bond can be covalent, covalent with a polar part or purely ionic. As a result of the exothennic interaction between the headgroup and the substrate, the molecules try to occupy each available surface site. Molecules that are already at the surface are pushed together during this process. Therefore, even for chemisorbed species, a certain surface mobility has to be anticipated before the molecules finally anchor. Otherwise the evolution of ordered stmctures could not be explained. [Pg.2621]

Covalent immobilization of proteins on nricrostmctured gold surfaces was studied in [226]. On Arese substrates, which were prepared by pCP aird etching. Are immobilization sites of proteins could be spatially controlled using air amino-reactive SAM. The whole process, i.e. production of Are micropattemed substrate including SAM exchairge aird protein immobilization, took a reasonably small amount of time ( 24 h), providing some flexibility in the experimental work. [Pg.2628]

The simplest example is that of tire shallow P donor in Si. Four of its five valence electrons participate in tire covalent bonding to its four Si nearest neighbours at tire substitutional site. The energy of tire fiftli electron which, at 0 K, is in an energy level just below tire minimum of tire CB, is approximated by rrt /2wCplus tire screened Coulomb attraction to tire ion, e /sr, where is tire dielectric constant or the frequency-dependent dielectric function. The Sclirodinger equation for tliis electron reduces to tliat of tlie hydrogen atom, but m replaces tlie electronic mass and screens the Coulomb attraction. [Pg.2887]

However, most impurities and defects are Jalm-Teller unstable at high-symmetry sites or/and react covalently with the host crystal much more strongly than interstitial copper. The latter is obviously the case for substitutional impurities, but also for interstitials such as O (which sits at a relaxed, puckered bond-centred site in Si), H (which bridges a host atom-host atom bond in many semiconductors) or the self-interstitial (which often fonns more exotic stmctures such as the split-(l lO) configuration). Such point defects migrate by breaking and re-fonning bonds with their host, and phonons play an important role in such processes. [Pg.2888]

DNA with a Site-Specilically, Covalently Bonnd Mutagen... [Pg.341]

The unmodified and complementary oligonucleotides were also synthesized, in order to detect thermodynamic and spectroscopic differences between the double helices. Circular dichroism spectra revealed that the covalently bound anthracene does not stack in the centre of the DNA double helix. Mutagenic activity by intercalative binding of the anthracene residue is thus unlikely. Only in vitro and in vivo replication experiments with site-specifically modified... [Pg.342]

Elucidating Mechanisms for the Inhibition of Enzyme Catalysis An inhibitor interacts with an enzyme in a manner that decreases the enzyme s catalytic efficiency. Examples of inhibitors include some drugs and poisons. Irreversible inhibitors covalently bind to the enzyme s active site, producing a permanent loss in catalytic efficiency even when the inhibitor s concentration is decreased. Reversible inhibitors form noncovalent complexes with the enzyme, thereby causing a temporary de-... [Pg.638]

There is nothing unique about the placement of this isolated segment to distinguish it from the placement of a small molecule on a lattice filled to the same extent. The polymeric nature of the solute shows up in the placement of the second segment This must be positioned in a site adjacent to the first, since the units are covalently bonded together. No such limitation exists for independent small molecules. To handle this development we assume that each site on the lattice has z neighboring sites and we call z the coordination number of the lattice. It might appear that the need for this parameter introduces into the model a quantity which would be difficult to evaluate in any eventual test of the model. It turns out, however, that the z s cancel out of the final result for, so we need not worry about this eventuality. [Pg.514]

Theoretical studies of diffusion aim to predict the distribution profile of an exposed substrate given the known process parameters of concentration, temperature, crystal orientation, dopant properties, etc. On an atomic level, diffusion of a dopant in a siUcon crystal is caused by the movement of the introduced element that is allowed by the available vacancies or defects in the crystal. Both host atoms and impurity atoms can enter vacancies. Movement of a host atom from one lattice site to a vacancy is called self-diffusion. The same movement by a dopant is called impurity diffusion. If an atom does not form a covalent bond with siUcon, the atom can occupy in interstitial site and then subsequently displace a lattice-site atom. This latter movement is beheved to be the dominant mechanism for diffusion of the common dopant atoms, P, B, As, and Sb (26). [Pg.349]

Fig. 7. Schematic representation of enzyme covalently bound to a functionalized conductive polymer where ( ) represents the functional group on the polymer and (B) the active site on the enzyme (42). Courtesy of the American Chemical Society. Fig. 7. Schematic representation of enzyme covalently bound to a functionalized conductive polymer where ( ) represents the functional group on the polymer and (B) the active site on the enzyme (42). Courtesy of the American Chemical Society.

See other pages where Covalency sites is mentioned: [Pg.280]    [Pg.215]    [Pg.216]    [Pg.163]    [Pg.169]    [Pg.243]    [Pg.246]    [Pg.70]    [Pg.166]    [Pg.235]    [Pg.40]    [Pg.55]    [Pg.280]    [Pg.215]    [Pg.216]    [Pg.163]    [Pg.169]    [Pg.243]    [Pg.246]    [Pg.70]    [Pg.166]    [Pg.235]    [Pg.40]    [Pg.55]    [Pg.263]    [Pg.124]    [Pg.1774]    [Pg.2222]    [Pg.2826]    [Pg.535]    [Pg.99]    [Pg.590]    [Pg.575]    [Pg.57]    [Pg.188]    [Pg.205]    [Pg.209]    [Pg.441]    [Pg.68]    [Pg.18]    [Pg.211]    [Pg.236]    [Pg.244]    [Pg.246]   
See also in sourсe #XX -- [ Pg.83 ]




SEARCH



Covalent immobilization site-nonspecific

Covalent immobilization site-specific

© 2024 chempedia.info