Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron-hole transfer

Fig. 12.21. The effect of incident light on an n-type semiconductor and on electron transfer. Electron-hole separation is promoted only in the space-charge region. The energy of the redox couple, Eredox, determines if there is oxidation or... Fig. 12.21. The effect of incident light on an n-type semiconductor and on electron transfer. Electron-hole separation is promoted only in the space-charge region. The energy of the redox couple, Eredox, determines if there is oxidation or...
In solid state materials, single-step electron transport between dopant species is well known. For example, electron-hole recombination accounts for luminescence in some materials [H]. Multistep hopping is also well known. Models for single and multistep transport are enjoying renewed interest in tlie context of DNA electron transfer [12, 13, 14 and 15]. Indeed, tliere are strong links between tire ET literature and tire literature of hopping conductivity in polymers [16]. [Pg.2973]

Another common loss process results from electron—hole recombination. In this process, the photoexcited electron in the LUMO falls back into the HOMO rather than transferring into the conduction band. This inefficiency can be mitigated by using supersensitizing molecules which donate an electron to the HOMO of the excited sensitizing dye, thereby precluding electron—hole recombination. In optimally sensitized commercial products, dyes... [Pg.450]

Copper(I) oxide [1317-39-1] is 2lp-ty e semiconductor, Cu2 0, in which proper vacancies act as acceptors to create electron holes that conduct within a narrow band in the Cu i7-orbitals. Nickel monoxide [1313-99-17, NiO, forms a deficient semiconductor in which vacancies occur in cation sites similar to those for cuprous oxide. For each cation vacancy two electron holes must be formed, the latter assumed to be associated with regular cations ([Ni " h = Semiconduction results from the transfer of positive charges from cation to cation through the lattice. Conduction of this type is similar... [Pg.358]

Producing electron-hole pairs by light excitation in the small particles (d < dg ) electrons and holes can easily be transferred to an electron acceptor and donor, respectively, provided that the energetic requirements are fulfilled. The quantum efficiency of the reaction depends on the transfer rate at the interface, on the recombination rate within the particle and on the transit time, the latter being given by ... [Pg.100]

Nosaka and Fox determined the quantum yield for the reduction of methyl viologen adsorbed on colloidal CdS particles as a function of incident light intensity. Electron transfer from CdS to MV " competes with electron-hole recombination. They derived a bimolecular rate constant of 9 10 cm s for the latter process. [Pg.144]

On the other hand, in oxidation processes, the electroactive substance Red must have the character of an electron donor. It must contain an occupied level with energy corresponding to that of some unoccupied level in the electrode. Oxidation occurs through transfer of electrons from the electroactive substance to the electrode or through the transfer of holes from the electrode to the electroactive substance. [Pg.258]

Scheme 6 Photo-induced electron transfer and hole transfer in DNA... Scheme 6 Photo-induced electron transfer and hole transfer in DNA...
Fig. 2. Surface temperature dependence of the vibrational excitation of NO(v = 0 — 1) in collisions with a clean Ag(lll) surface. The observed thermal activation was attributed to hot electron-hole-pair recombination transferring energy to NO vibration. This work provided some of the first strong evidence that metal electrons can interact with an adsorbate molecule strongly enough to change its vibrational quantum numbers. (See Ref. 24.)... Fig. 2. Surface temperature dependence of the vibrational excitation of NO(v = 0 — 1) in collisions with a clean Ag(lll) surface. The observed thermal activation was attributed to hot electron-hole-pair recombination transferring energy to NO vibration. This work provided some of the first strong evidence that metal electrons can interact with an adsorbate molecule strongly enough to change its vibrational quantum numbers. (See Ref. 24.)...
Much theoretical work went into trying to understand these results more completely. Newns constructed a simple ID model that incorporated the idea of electrons hopping in and out of the tt anti-bonding orbital of NO as the means by which hot electron-hole pairs could transfer energy to the NO molecule.26 Using reasonable assumption, he was able to quantitatively reproduce the experimentally-observed surface temperature and incidence energy dependence. [Pg.388]

On the other hand, the similarity between metals is a characteristic of the electron-mediated vibrational energy transfer models. Here one must only calculate the population of excited electron-hole pairs at the energy of vibrational excitation, a quantity that is quite similar for many metals.b... [Pg.389]

Using this model they have tried to look at important chemical processes at metal surfaces to deduce the role of electronic nonadiabaticity. In particular, they have tried to evaluate the importance of electron-hole-pair excitation in scattering, sticking and surface mobility of CO on a Cu(100) surface.36,37 Those studies indicated that the magnitude of energy transferred by coupling to the electron bath was significantly less than that coupled to phonons. Thus the role of electron-hole-pair excitation in... [Pg.390]

The mere exposure of diphenyl-polyenes (DPP) to medium pore acidic ZSM-5 was found to induce spontaneous ionization with radical cation formation and subsequent charge transfer to stabilize electron-hole pair. Diffuse reflectance UV-visible absorption and EPR spectroscopies provide evidence of the sorption process and point out charge separation with ultra stable electron hole pair formation. The tight fit between DPP and zeolite pore size combined with efficient polarizing effect of proton and aluminium electron trapping sites appear to be the most important factors responsible for the stabilization of charge separated state that hinder efficiently the charge recombination. [Pg.377]

In a metal, there are excited states for electrons that lie below the ionization energy. This can be conceived as an electron in a "conduction band" and a "hole" that interact so that the combination is neutral but not of lowest energy. Such an excited state is called an exciton. Excitons may move by diffusion of the electron-hole pair or by transfer of a molecular exciton to another molecule. Reversion of the exciton to a lower energy state may be slow enough for the lifetime to be longer that of lattice relaxation processes. [Pg.248]


See other pages where Electron-hole transfer is mentioned: [Pg.419]    [Pg.414]    [Pg.415]    [Pg.415]    [Pg.415]    [Pg.358]    [Pg.132]    [Pg.176]    [Pg.69]    [Pg.63]    [Pg.402]    [Pg.144]    [Pg.26]    [Pg.82]    [Pg.90]    [Pg.264]    [Pg.276]    [Pg.285]    [Pg.289]    [Pg.309]    [Pg.116]    [Pg.47]    [Pg.480]    [Pg.31]    [Pg.389]    [Pg.317]    [Pg.99]    [Pg.335]    [Pg.85]    [Pg.119]    [Pg.120]    [Pg.243]    [Pg.257]    [Pg.164]    [Pg.165]    [Pg.103]   
See also in sourсe #XX -- [ Pg.77 , Pg.80 , Pg.85 ]




SEARCH



Electron hole

Electronic holes

Hole photo-induced electron transfer

Holes hole transfer

© 2024 chempedia.info