Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coupling side reactions

The synthesis of organolithiums by reductive lithiation of phenylsulfides owes its importance to the ease with which the sulfides can be formed.8 Unlike halides, sulfides are not electrophilic, and self-coupling side reactions do not pose a problem. [Pg.159]

Benzyl halides also form dimers in a coupling side reaction high dilution of benzyl chloride, however, leads to high yields of the organomagnesium-halide reagent . Depending on the substitution, other benzyl halides give more or less dimerization e.g.. [Pg.401]

The Wurt/ coupling side reaction, which generally accompanies the formation of Grignard reagent from alkyl halide and magnesium, gives products... [Pg.27]

The controlled thermal decomposition of dry aromatic diazonium fluoborates to yield an aromatic fluoride, boron trifluoride and nitrogen is known as the Schiemann reaction. Most diazonium fluoborates have definite decomposition temperatures and the rates of decomposition, with few exceptions, are easily controlled. Another procedure for preparing the diazonium fluoborate is to diazotise in the presence of the fluoborate ion. Fluoboric acid may be the only acid present, thus acting as acid and source of fluoborate ion. The insoluble fluoborate separates as it is formed side reactions, such as phenol formation and coupling, are held at a minimum temperature control is not usually critical and the temperature may rise to about 20° without ill effect efficient stirring is, however, necessary since a continuously thickening precipitate is formed as the reaction proceeds. The modified procedure is illustrated by the preparation of -fluoroanisole ... [Pg.594]

Then N-Boc-O-benzylserine is coupled to the free amino group with DCC. This concludes one cycle (N° -deprotection, neutralization, coupling) in solid-phase synthesis. All three steps can be driven to very high total yields (< 99.5%) since excesses of Boc-amino acids and DCC (about fourfold) in CHjClj can be used and since side-reactions which lead to soluble products do not lower the yield of condensation product. One side-reaction in DCC-promoted condensations leads to N-acylated ureas. These products will remain in solution and not reaa with the polymer-bound amine. At the end of the reaction time, the polymer is filtered off and washed. The times consumed for 99% completion of condensation vary from 5 min for small amino acids to several hours for a bulky amino acid, e.g. Boc-Ile, with other bulky amino acids on a resin. A new cycle can begin without any workup problems (R.B. Merrifield, 1969 B.W. Erickson, 1976 M. Bodanszky, 1976). [Pg.232]

The synthesis described met some difficulties. D-Valyl-L-prolyl resin was found to undergo intramolecular aminoiysis during the coupling step with DCC. 70< o of the dipeptide was cleaved from the polymer, and the diketopiperazine of D-valyl-L-proline was excreted into solution. The reaction was catalyzed by small amounts of acetic acid and inhibited by a higher concentration (protonation of amine). This side-reaction can be suppressed by adding the DCC prior to the carboxyl component. In this way, the carboxyl component is "consumed immediately to form the DCC adduct and cannot catalyze the cyclization. [Pg.237]

It was found later that the electrolytic coupling reaction gave better yield with the acetate corresponding to B, since fragmentation was a major side reaction of the y-hydroxy acid B (Ref. 2). [Pg.244]

As a result of various side reactions, the yields are relatively low. However, in no case was ring fission found during the oxidations. Specially noteworthy is the ease with which the two methine groups in the 5-position of the 2-hydrazino-selenazoles are coupled together. Reference to models indicates that the quinonoid dyes exist in the trans form. [Pg.361]

The synthetic applicability is rather limited, due to the various side-reactions observed, such as eliminations and rearrangement reactions. The attempted coupling of two different alkyl halides in order to obtain an unsymmetrical hydrocarbon, usually gives the desired product in only low yield. However the coupling reaction of an aryl halide with an alkyl halide upon treatment with a metal (the Wurtz-Fittig reaction) often proceeds with high yield. The coupling of two aryl halides usually does not occur under those conditions (see however below ) since the aryl halides are less reactive. [Pg.305]

Various side reactions may complicate RAFT polymerization. Transfer to solvents, monomer and initiator occur as in conventional radical polymerization. Other potential side reactions involve the intermediate radicals 165 and 167. These radicals may couple with another radical (Q ) to form 271 or disproportionate with Q to form 270. They may also react with oxygen. The intermediate radicals 165 and 167 are not known to add monomer. [Pg.517]

With the stable donor adducts of silylene complexes, valuable model compounds are now available for reactive intermediates which otherwise cannot be observed directly. For example, a side reaction occurring in the hydrosilation process [61 -63], is the dehydrogenative coupling of silanes to disilanes. This reaction could be explained in terms of a silylene transfer reaction with a coordinated silylene as the key intermediate. [Pg.4]

Recent investigations have been concerned with the reactivities observed with secondary silanes R2SiH2. In these cases, a dehydrogenative coupling of silanes to disilanes is observed as a side reaction of the hydrosilation. However, the hydrosilation can be totally suppressed if the olefins are omitted. The key intermediate in the coupling reaction has been identified as a silylene complex (sect. 2.5.4). [Pg.14]

The side reactions existing in the transition metal coupling reactions are sometimes responsible for the low molecular weight. These side reactions can be classified in two types (1) reduction of monomer and (2) coupling of monomer with a nonreactive chain end. These side reactions can be minimized by proper choice of reaction temperature, catalysts, and catalyst loading. [Pg.477]

Shear modulus, polyamide, 138 Sheet molding compounds (SMCs), 30 Shoe sole products, 205 Shore hardness gauge, 243 Side-chain liquid crystalline polymers, 49 Side reactions, in transition metal coupling, 477... [Pg.600]

This reaction is similar to 13-1 and, like that one, generally requires activated substrates. With unactivated substrates, side reactions predominate, though aryl methyl ethers have been prepared from unactivated chlorides by treatment with MeO in HMPA. This reaction gives better yields than 13-1 and is used more often. A good solvent is liquid ammonia. The compound NaOMe reacted with o- and p-fluoronitrobenzenes 10 times faster in NH3 at — 70°C than in MeOH. Phase-transfer catalysis has also been used. The reaction of 4-iodotoluene and 3,4-dimethylphenol, in the presence of a copper catalyst and cesium carbonate, gave the diaryl ether (Ar—O—Ar ). Alcohols were coupled with aryl halides in the presence of palladium catalysts to give the Ar—O—R ether. Nickel catalysts have also been used. ... [Pg.862]


See other pages where Coupling side reactions is mentioned: [Pg.117]    [Pg.159]    [Pg.515]    [Pg.86]    [Pg.43]    [Pg.44]    [Pg.101]    [Pg.380]    [Pg.140]    [Pg.101]    [Pg.212]    [Pg.117]    [Pg.159]    [Pg.515]    [Pg.86]    [Pg.43]    [Pg.44]    [Pg.101]    [Pg.380]    [Pg.140]    [Pg.101]    [Pg.212]    [Pg.53]    [Pg.143]    [Pg.154]    [Pg.234]    [Pg.293]    [Pg.209]    [Pg.477]    [Pg.503]    [Pg.293]    [Pg.408]    [Pg.155]    [Pg.259]    [Pg.123]    [Pg.32]    [Pg.251]    [Pg.434]    [Pg.324]    [Pg.1005]    [Pg.110]    [Pg.47]    [Pg.34]    [Pg.104]    [Pg.23]    [Pg.535]   
See also in sourсe #XX -- [ Pg.94 ]




SEARCH



Cross couplings side reactions

Side Reactions During Coupling

Suzuki-Miyaura coupling side reactions

Synthesis of the Side Chain by Coupling Reactions

© 2024 chempedia.info