Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion nickel aluminides

Since many years the intermetallic phases based on aluminides have been an important topic for research and development, because of their high melting points, low densities and excelent corrosion resistance at high temperatures. Especially, nickel aluminides have been of great interest as coating materials for several high temperature applications. [Pg.109]

The present monograph was first written as a chapter for Volume 8 of the series Materials Sdence and Technology A Comprehensive Treatment , edited by Robert W. Cahn, Peter Haasen, and Edward J. Kramer (Volume Editor Dr. Karl Heinz Matucha). Its aim is to give an overview of intermetallics, which is both detailed and comprehensive and which includes the fundamentals as well as applications. The result is an extended, critical review of the whole field of intermetallics with an emphasis on those intermetallic phases which have already been applied as functional or structural materials or which are currently the subject of materials developments. A historical introduction and a discussion of the relationship between atomic bonding, crystal structure, phase stability and properties is followed by a discussion of the major classes of intermetallics. The titanium aluminides, nickel aluminides, iron aluminides, copper phases, A15 phases. Laves phases, beryllides, rare earth phases, and siliddes are reviewed. In particular, the crystal structures, phase diagrams, and physical properties as well as the mechanical and corrosion behavior are treated. The state of developments as well as prospects and problems are discussed in view of present and future applications. The publisher has decided to publish the review as a separate monograph in order to make it accessible to a wider audience. [Pg.172]

Ellis, D. L. (1993), Hot Corrosion of the B2 Nickel Aluminides, Cleveland, OH NASA Lewis Contractor Report No. 191082. [Pg.866]

Pack cementation is the most widely used process for making diffusion aluminide coatings. Diffusion coatings are primarily aluminide coatings composed of aluminum and the base metal. A nickel-based superalloy forms a nickel-aluminide, which is a chemical compound with the formula NiAl. A cobalt-based superalloy forms a cobalt-aluminide, which is a chemical compoimd with the formula CoAl. It is common to incorporate platinum into the coating to improve the corrosion and oxidation resistance. This is called a platinum-aluminide coating. Diffusion chrome coatings are also available. [Pg.792]

Calorised Coatings The nickel- and cobalt-base superalloys of gas turbine blades, which operate at high temperatures, have been protected by coatings produced by cementation. Without such protection, the presence of sulphur and vanadium from the fuel and chloride from flying over the sea promotes conditions that remove the protective oxides from these superalloys. Pack cementation with powdered aluminium produces nickel or cobalt aluminides on the surfaces of the blade aerofoils. The need for overlay coatings containing yttrium have been necessary in recent times to deal with more aggressive hot corrosion conditions. [Pg.477]

Aluminides based on the intermetallic phases Ni3Al and Fe3Al are considered both as structural materials and as coatings for high temperature applications [1-6]. Their excellent corrosion resistance is due to their forming a dense, protective alumina scale. Alumina, especially ot-Al203, shows low rate constants even at temperatures above 1000°C [7]. Unlike chromia, which is formed on conventional stainless steels and nickel base alloys, alumina does not evaporate above 1000°C [8] and it is even stable in oxygen deficient atmospheres. [Pg.203]

As mentioned in the preceding text, pack aluminizing is commonly carried out on nickel- and cobalt-base superalloys. Diffusion-coated superalloys develop an aluminide (NiAl or CoAl) outer layer with enhanced corrosion resistance. It is estimated that more than 90% of all coated gas turbine engine hot section blades and vanes made from superalloys are coated by pack cementation and related processes. Detailed information on protective diffusion coatings for superalloys can be found in Ref 24. [Pg.118]


See other pages where Corrosion nickel aluminides is mentioned: [Pg.410]    [Pg.85]    [Pg.109]    [Pg.511]    [Pg.39]    [Pg.129]    [Pg.439]    [Pg.6]    [Pg.109]    [Pg.365]    [Pg.233]    [Pg.761]    [Pg.414]    [Pg.1365]    [Pg.288]    [Pg.162]    [Pg.56]    [Pg.209]    [Pg.210]    [Pg.515]    [Pg.39]    [Pg.443]    [Pg.184]    [Pg.307]    [Pg.859]    [Pg.792]    [Pg.141]    [Pg.142]   
See also in sourсe #XX -- [ Pg.85 , Pg.92 ]




SEARCH



Aluminides

Nickel aluminide

Nickel aluminides

Nickel corrosion

© 2024 chempedia.info