Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Correspondence postulate

The unification of mechanics and thermodynamics is achieved by adding to three fundamental postulates of quantum mechanics (namely, the correspondence postulate, the mean-value postulate, and the dynamical postulate) two more called the energy and stable-equilibrium postulates, which express the implications of the first and second laws of thermodynamics, respectively. [Pg.262]

Postulate 1 Correspondence Postulate. Some linear Hermitian operators on Hilbert space which have complete orthonormal sets of eigenvectors (eigenfunctions) correspond to physical observables of a system. If operator P corresponds to observable P, then operator F(P), where F is a function, corresponds to observable F(P). [Pg.264]

The 2 4 state correspondence postulated by Ramsey was confirmed with the more realistic model molecule, (H3Si)2SiR2 (R = CH3). Here too the importance of diffuse 4s and 4p orbitals for stabilizing the lower excited states and establishing their energetic order is manifest, as is the unimportance of silicon 3d orbitals. [Pg.274]

The relationship between tire abstract quantum-mechanical operators /4and the corresponding physical quantities A is the subject of the fourth postulate, which states ... [Pg.8]

The fifth postulate and its corollary are extremely important concepts. Unlike classical mechanics, where everything can in principle be known with precision, one can generally talk only about the probabilities associated with each member of a set of possible outcomes in quantum mechanics. By making a measurement of the quantity A, all that can be said with certainty is that one of the eigenvalues of /4 will be observed, and its probability can be calculated precisely. However, if it happens that the wavefiinction corresponds to one of the eigenfunctions of the operator A, then and only then is the outcome of the experiment certain the measured value of A will be the corresponding eigenvalue. [Pg.11]

Suppose that the system property A is of interest, and that it corresponds to the quantum-mechanical operator A. The average value of A obtained m a series of measurements can be calculated by exploiting the corollary to the fifth postulate... [Pg.13]

Starting with the quantum-mechanical postulate regarding a one-to-one correspondence between system properties and Hemiitian operators, and the mathematical result that only operators which conmuite have a connnon set of eigenfiinctions, a rather remarkable property of nature can be demonstrated. Suppose that one desires to detennine the values of the two quantities A and B, and that tire corresponding quantum-mechanical operators do not commute. In addition, the properties are to be measured simultaneously so that both reflect the same quantum-mechanical state of the system. If the wavefiinction is neither an eigenfiinction of dnor W, then there is necessarily some uncertainty associated with the measurement. To see this, simply expand the wavefiinction i in temis of the eigenfiinctions of the relevant operators... [Pg.15]

At first, the dimeric nature of the base isolated from 3-ethyl-2-methyl-4-phenylthiazolium was postulated via a chemical route. Indeed the adduct of ICH, on a similar 2-ethylidene base is a 2-isopropylthiazolium salt in the case of methylene base it is an anilinovinyl compound identified by its absorption spectrum and chemical reactivity (45-47). This dimeric structure of the molecule has been definitively established by its NMR spectrum. It is very similar to the base issued from 2.3-dimethyl-benzo thiazolium (48). It corresponds to 2-(3 -ethyl-4 -phenyl-2 -methylenethiazolinilydene)2-methyl-3-ethyl-4-phenylthiazoline (13). There is only one methyl signal (62 = 2.59), and two series of signals (63= 1.36-3.90, 63= 1.12-3.78) correspond to ethyl groups. Three protons attributed to positions T,5,5 are shifted to a lower field 5.93, 6.58, and 8.36 ppm. The bulk of the ten phenyl protons is at 7.3 ppm (Scheme 22). [Pg.39]

An alternative way of deriving the BET equation is to express the problem in statistical-mechanical rather than kinetic terms. Adsorption is explicitly assumed to be localized the surface is regarded as an array of identical adsorption sites, and each of these sites is assumed to form the base of a stack of sites extending out from the surface each stack is treated as a separate system, i.e. the occupancy of any site is independent of the occupancy of sites in neighbouring stacks—a condition which corresponds to the neglect of lateral interactions in the BET model. The further postulate that in any stack the site in the ith layer can be occupied only if all the underlying sites are already occupied, corresponds to the BET picture in which condensation of molecules to form the ith layer can only take place on to molecules which are present in the (i — l)th layer. [Pg.45]

RTIX2 derivatives are covalent compounds, generally soluble in organic solvents. The aryl and vinyl derivatives are more stable than the corresponding alkyl compounds. This type of compound has been postulated to be an intermediate in many organic synthetic reactions involving thaUium(III) species. [Pg.470]

Phototransformation of pyridazine 1,2-dioxides sharply contrasts with that of pyridazine 1-oxides. Pyridazine 1,2-dioxide derivatives give 3a,6a-dihydroisoxazolo[5,4- f]isoxazoles (53) through postulated bisiminoxyl radicals. 3,6-Diphenylpyridazine 1,2-dioxide gives, besides the corresponding bicyclic derivative (53), 3-phenylisoxazole (54) and 4,5-diphenyl-furoxan (55). The last two products can be explained by generation of the nitrile oxide from the intermediate (53) with subsequent dimerization to the furoxan (55 Scheme 18) (79T1267). [Pg.13]

Photolysis of pyridazine IV-ethoxycarbonylimide results in the formation of the pyrrole derivative (56). The rearrangement is postulated to proceed via a diaziridine, followed by ring expansion to the corresponding 1,2,3-triazepine derivative and rearrangement to a triazabicycloheptadiene, from which finally a molecule of nitrogen is eliminated (Scheme 19) (80CPB2676). [Pg.13]

In a similar manner to the formation of pyridazines from AT-aminopyrroles, cinnolines or phthalazines are obtainable from the corresponding 1-aminooxindoles or 2-amino-phthalimides. If the relatively inaccessible 1-aminooxindoles are treated with lead tetraacetate, mercuric acetate, r-butyl hypochlorite (69JCS(C)772) or other agents, cinnolones are formed as shown in Scheme 105. The reaction was postulated to proceed via an intermediate... [Pg.53]

Schematic DRD shown in Fig. 13-59 are particularly useful in determining the imphcations of possibly unknown ternary saddle azeotropes by postulating position 7 at interior positions in the temperature profile. It should also be noted that some combinations of binary azeotropes require the existence of a ternaiy saddle azeotrope. As an example, consider the system acetone (56.4°C), chloroform (61.2°C), and methanol (64.7°C). Methanol forms minimum-boiling azeotropes with both acetone (54.6°C) and chloroform (53.5°C), and acetone-chloroform forms a maximum-boiling azeotrope (64.5°C). Experimentally there are no data for maximum or minimum-boiling ternaiy azeotropes. The temperature profile for this system is 461325, which from Table 13-16 is consistent with DRD 040 and DRD 042. However, Table 13-16 also indicates that the pure component and binary azeotrope data are consistent with three temperature profiles involving a ternaiy saddle azeotrope, namely 4671325, 4617325, and 4613725. All three of these temperature profiles correspond to DRD 107. Experimental residue cui ve trajectories for the acetone-... Schematic DRD shown in Fig. 13-59 are particularly useful in determining the imphcations of possibly unknown ternary saddle azeotropes by postulating position 7 at interior positions in the temperature profile. It should also be noted that some combinations of binary azeotropes require the existence of a ternaiy saddle azeotrope. As an example, consider the system acetone (56.4°C), chloroform (61.2°C), and methanol (64.7°C). Methanol forms minimum-boiling azeotropes with both acetone (54.6°C) and chloroform (53.5°C), and acetone-chloroform forms a maximum-boiling azeotrope (64.5°C). Experimentally there are no data for maximum or minimum-boiling ternaiy azeotropes. The temperature profile for this system is 461325, which from Table 13-16 is consistent with DRD 040 and DRD 042. However, Table 13-16 also indicates that the pure component and binary azeotrope data are consistent with three temperature profiles involving a ternaiy saddle azeotrope, namely 4671325, 4617325, and 4613725. All three of these temperature profiles correspond to DRD 107. Experimental residue cui ve trajectories for the acetone-...
Turning to non-metallic catalysts, photoluminescence studies of alkaline-earth oxides in dre near-ultra-violet region show excitation of electrons corresponding to duee types of surface sites for the oxide ions which dominate the surface sUmcture. These sites can be described as having different cation co-ordination, which is normally six in the bulk, depending on the surface location. Ions on a flat surface have a co-ordination number of 5 (denoted 5c), those on the edges 4 (4c), and dre kiirk sites have co-ordination number 3 (3c). The latter can be expected to have higher chemical reactivity than 4c and 5c sites, as was postulated for dre evaporation mechanism. [Pg.124]

The glass transition temperature of a random copolymer usually falls between those of the corresponding homopolymers since the copolymers will tend to have intermediate chain stiffness and interchain attraction. Where these are the only important factors to be considered a linear relationship between Tg and copolymer composition is both reasonable to postulate and experimentally verifiable. One form of this relationship is given by the equation... [Pg.63]

The differential rate equations of a complex reaetion, expressing rates as functions of concentrations, are usually simpler in form than are the corresponding integrated equations, whieh express concentrations as funetions of time moreover, it is always possible to write down the differential rate equations for a postulated kinetie seheme, whereas it may be difficult or impossible to integrate them. Of course, we usually measure concentration as a funetion of time. If, however, we can measure rates, we may use the differential equations directly. [Pg.77]

Next, Ah and Ad are written in terms of partition functions (see Section 5.2), which are in principle calculable from quantum mechanical results together with experimental vibrational frequencies. The application of this approach to mechanistic problems involves postulating alternative models of the transition state, estimating the appropriate molecular properties of the hypothetical transition state species, and calculating the corresponding k lko values for comparison with experiment.""- " "P... [Pg.296]

The parameters Ci, t2 were postulated to be dependent only upon the substrate, and d, d2, upon the solvent. A large body of kinetic data, embodying many structural types and leaving groups, was subjected to a statistical analysis. In order to achieve a unique solution, these arbitrary conditions were imposed cj = 3.0 C2 for MeBr Cl = C2 = 1.0 for f-BuCl 3.0 Ci = C2 for PhsCF. Some remarkably successful correlations [calculated vs. experimental log (fc/fco)l were achieved, but the approach appeared to lack physical significance and was not much used. Many years later Peterson et al. - showed a correspondence between Eqs. (8-69) and (8-74) in particular, the very simple result di + d, = T was found. [Pg.434]

The increase in the proportion of the tetrasubstituted isomer in the cases of the morpholine and piperidine enamines of 2-methylcyelohexanone has been ascribed to both steric and electronic factors. The authors propose that the overlap of the electron pair on the nitrogen atom and the v electrons of the double bond is much more important in the case of the pyrrolidine enamines and much less with the others. Support for this postulate was provided by the NMR spectra of these enamines, wherein the chemical shifts of the vinylic protons of the pyrrolidine enamines were at a higher field than those of the corresponding morpholine and piperidine enamines by 20-27 Hz. The greater amount of overlap or electron delocalization, in the case of pyrrolidine enamine, is in accord with the postulate of Brown et al. (7- ) that the double bond exo to the five-membered ring is more favored than the double bond exo to the six-membered ring. [Pg.8]

The formation of 88 is postulated to be occurring by the nucleophilic attack of a hydride ion (47), abstracted from the secondary amine, on the a-carbon atom of the iminium salt (89). The resulting carbonium ion (90) then loses a proton to give the imine (91), which could not be separated because of its instability (4H). In the case of 2-methyIhexamethylenimine, however, the corresponding dehydro compound /l -2-methylazacyclo-heptene (92) was isolated. The hydride addition to the iminium ion occurs from the less hindered exo side. [Pg.28]

Use of the Hammond Postulate requires that the reverse reactions both be fast. Obtain energies for the transition states leading to 1-propyl and 2-propyl radicals ipropane+Br end and propane+Br center), and draw a reaction energy diagram for each (place the diagrams on the same axes). Is use of the Hammond Postulate justified Compare the partial CH and HBr bond distances in each transition state to the corresponding distances in propane and hydrogen bromide, respectively. Does the Hammond Postulate correctly predict which bond distances will be most similar Explain. [Pg.65]

On the basis of the dissociation constant values, it seems sensible to conclude that, in these moderately basic carbinolamines, the hydrogen atom of the hydroxyl group is suflQciently acid to be eliminated under the influence of an alkali and by its transfer to the nitrogen atom of the mesomeric anion, the formation of the amino-aldehyde form may result. Instead of the amino-aldehyde, however, the corresponding bimolecular ether (15a-c) can be obtained. " It can be concluded that the formation of the bimolecular ether (S l or 8 2 mechanism) and the formation of the amino-aldehyde (B-SeI or B-Se2 mechanism) are competitive reactions. It seems probable that where the first reaction can occur the latter one is pushed into the background. The triple tautomeric system postulated by Gadamer... [Pg.178]

Direct bromination readily yields the 6-bromo derivative (111), just as with uracil. Analogous chlorination and iodination requires the presence of alkalies and even then proceeds in low yield. The 6-chloro derivative (113) was also obtained by partial hydrolysis of the postulated 3,5,6-trichloro-l,2,4-triazine (e.g.. Section II,B,6). The 6-bromo derivative (5-bromo-6-azauracil) served as the starting substance for several other derivatives. It was converted to the amino derivative (114) by ammonium acetate which, by means of sodium nitrite in hydrochloric acid, yielded a mixture of 6-chloro and 6-hydroxy derivatives. A modified Schiemann reaction was not suitable for preparing the 6-fluoro derivative. The 6-hydroxy derivative (115) (an isomer of cyanuric acid and the most acidic substance of this group, pKa — 2.95) was more conveniently prepared by alkaline hydrolysis of the 6-amino derivative. Further the bromo derivative was reacted with ethanolamine to prepare the 6-(2-hydroxyethyl) derivative however, this could not be converted to the corresponding 2-chloroethyl derivative. Similarly, the dimethylamino, morpholino, and hydrazino derivatives were prepared from the 6-bromo com-pound. ... [Pg.230]


See other pages where Correspondence postulate is mentioned: [Pg.122]    [Pg.122]    [Pg.79]    [Pg.16]    [Pg.17]    [Pg.21]    [Pg.384]    [Pg.395]    [Pg.245]    [Pg.514]    [Pg.460]    [Pg.221]    [Pg.13]    [Pg.294]    [Pg.36]    [Pg.76]    [Pg.257]    [Pg.193]    [Pg.439]    [Pg.801]    [Pg.84]    [Pg.197]    [Pg.296]    [Pg.131]    [Pg.23]    [Pg.61]    [Pg.113]   
See also in sourсe #XX -- [ Pg.264 ]




SEARCH



© 2024 chempedia.info