Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper material defects

Sheet and Strip. The manufacture of wrought copper materials starts with either semicontinuously cast slabs that are hot roUed, or cast plate that is thin enough, near 13 mm (0.5 in.), to be cold roUed directly. The surfaces of both hot roUed slabs and as-cast plate are milled to remove defects before proceeding to cold rolling and annealing operations. [Pg.218]

Figure 14.6 Material defect, perhaps a lap or seam, on the external surface of a finned copper tube. Figure 14.6 Material defect, perhaps a lap or seam, on the external surface of a finned copper tube.
To verify the modelling of the data eolleetion process, calculations of SAT 4, in the entrance window of the XRII was compared to measurements of RNR p oj in stored data as function of tube potential. The images object was a steel cylinder 5-mm) with a glass rod 1-mm) as defect. X-ray spectra were filtered with 0.6-mm copper. Tube current and exposure time were varied so that the signal beside the object. So, was kept constant for all tube potentials. Figure 8 shows measured and simulated SNR oproj, where both point out 100 kV as the tube potential that gives a maximum. Due to overestimation of the noise in calculations the maximum in the simulated values are normalised to the maximum in the measured values. Once the model was verified it was used to calculate optimal choice of filter materials and tube potentials, see figure 9. [Pg.212]

Ferrous-aUoy-clad tube sheets are generally prepared by a weld overlay process in which the alloy material is deposited by welding upon the face of the tube sheet. Precautions are required to produce a weld deposit free of defects, since these may permit the process fluid to attack the base metal below the alloy. Copper-aUoy-clad tube sheets are prepared by brazing the alloy to the carbon steel backing material. [Pg.1074]

Dents in tubing can induce erosion failures, especially in soft metals such as copper and brass. Welding and improper heat treatment of stainless steel can lead to localized corrosion or cracking through a change in the microstructure, such as sensitization. Another form of defect is the inadvertent substitution of an improper material. [Pg.316]

Ultramodern techniques are being applied to the study of corrosion thus a very recent initiative at Sandia Laboratories in America studied the corrosion of copper in air spiked with hydrogen sulphide by a form of combinatorial test, in which a protective coat of copper oxide was varied in thickness, and in parallel, the density of defects in the copper provoked by irradiation was also varied. Defects proved to be more influential than the thickness of the protective layer. This conclusion is valuable in preventing corrosion of copper conductors in advanced microcircuits. This set of experiments is typical of modern materials science, in that quite diverse themes... combinatorial methods, corrosion kinetics and irradiation damage... are simultaneously exploited. [Pg.457]

The discussion so far has been limited to the structure of pure metals, and to the defects which exist in crysteds comprised of atoms of one element only. In fact, of course, pure metals are comparatively rare and all commercial materials contain impurities and, in many cases also, deliberate alloying additions. In the production of commercially pure metals and of alloys, impurities are inevitably introduced into the metal, e.g. manganese, silicon and phosphorus in mild steel, and iron and silicon in aluminium alloys. However, most commercial materials are not even nominally pure metals but are alloys in which deliberate additions of one or more elements have been made, usually to improve some property of the metal examples are the addition of carbon or nickel and chromium to iron to give, respectively, carbon and stainless steels and the addition of copper to aluminium to give a high-strength age-hardenable alloy. [Pg.1270]

Materials such as polypyrrole are exciting in terms of their future technological impact, not just because of the obvious applications of such a simple, cheap electrochromic but because it may be possible to develop them sufficiently to replace the more expensive, and often toxic, metallic conductors commonly employed in the electronics industry. This may not be such a distant dream since it has been calculated that the intrinsic conductivity of these materials, i.e. without the defects that are currently defeating attempts to increase their conductivity of c, < lOOOfl 1 cm", may be many times that of copper. [Pg.334]

The low-temperature thermal conductivity of different materials may differ by many orders of magnitude (see Fig. 3.16). Moreover, the thermal conductivity of a single material, as we have seen, may heavily change because of impurities or defects (see Section 11.4). In cryogenic applications, the choice of a material obviously depends not only on its thermal conductivity but also on other characteristics of the material, such as the specific heat, the thermal contraction and the electrical and mechanical properties [1], For a good thermal conductivity, Cu, Ag and A1 (above IK) are the best metals. Anyway, they all are quite soft especially if annealed. In case of high-purity aluminium [2] and copper (see Section 11.4.3), the thermal conductivities are k 10 T [W/cm K] and k T [W/cm K], respectively. [Pg.104]

It is important that the copper is in the monovalent state and incorporated into the silver hahde crystals as an impurity. Because the Cu+ has the same valence as the Ag+, some Cu+ will replace Ag+ in the AgX crystal, to form a dilute solid solution Cu Agi- X (Fig. 2.6d). The defects in this material are substitutional CuAg point defects and cation Frenkel defects. These crystallites are precipitated in the complete absence of light, after which a finished glass blank will look clear because the silver hahde grains are so small that they do not scatter light. [Pg.63]

Thermal transmission testing is an excellent way of detecting various types of anomalies such as surface corrosion under paint before the corrosion becomes visually evident. Thin, single-layer structures, such as aircraft skin panels, can be inspected for surface and subsurface discontinuities. This test is simple and inexpensive, although materials with poor heat-transfer properties are difficult to test, and the joint must be accessible from both sides. For nonmetallic materials, the defect diameter must be on the order of 4 times its depth below the surface to obtain a reliable thermal indication. For metals, the defect diameter must be approximately 8 times its depth. Some bright surfaces such as bare copper and aluminum do not emit sufficient infrared radiation and may require a darkening coating on their surface. [Pg.459]


See other pages where Copper material defects is mentioned: [Pg.23]    [Pg.213]    [Pg.1336]    [Pg.354]    [Pg.421]    [Pg.724]    [Pg.1146]    [Pg.204]    [Pg.801]    [Pg.165]    [Pg.173]    [Pg.18]    [Pg.106]    [Pg.129]    [Pg.139]    [Pg.442]    [Pg.562]    [Pg.570]    [Pg.571]    [Pg.597]    [Pg.779]    [Pg.252]    [Pg.1518]    [Pg.277]    [Pg.699]    [Pg.65]    [Pg.18]    [Pg.34]    [Pg.185]    [Pg.708]    [Pg.212]    [Pg.515]    [Pg.667]    [Pg.37]    [Pg.402]    [Pg.125]    [Pg.1077]    [Pg.1088]   
See also in sourсe #XX -- [ Pg.322 , Pg.325 ]




SEARCH



Material defects

© 2024 chempedia.info