Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper chromite esters

Reduction. Hydrogenation of dimethyl adipate over Raney-promoted copper chromite at 200°C and 10 MPa produces 1,6-hexanediol [629-11-8], an important chemical intermediate (32). Promoted cobalt catalysts (33) and nickel catalysts (34) are examples of other patented processes for this reaction. An eadier process, which is no longer in use, for the manufacture of the 1,6-hexanediamine from adipic acid involved hydrogenation of the acid (as its ester) to the diol, followed by ammonolysis to the diamine (35). [Pg.240]

Ruthenium dioxide or ruthenium-on-carbon are effective catalysts for hydrogenation of mono- and dicarboxylic acids to the alcohol or glycol. High pressures (5,000-10,000 psig) and elevated temperatures (130-225 C) have been used in these hydrogenations 8,12,24). Yields of alcohol tend to be less than perfect because of esterification of the alcohol. Near quantitative yields of alcohol can be obtained by mixing ruthenium and copper chromite catalysts so as to reduce the ester as formed. [Pg.78]

Copper chromite 14) and barium-promoted copper chromite (75,/7) have been used for acid reductions but very high temperatures (300 C) are required. The necessary temperature is sufficiently higher than that required foresters to permit selective reduction of half-acid esters to the hydroxy acid 23). The reverse selectivity can be achieved by reduction over H Ru4 CO)a PBu3)4 at I00-200 C and 1500-3000 psig. This homogeneous catalyst will reduce acids and anhydrides, but not esters (2). [Pg.79]

Alcohols are the most frequently formed products of ester hydrogenolysis. The hydrogenation of esters to alcohols is a reversible reaction with alcohol formation favored at high pressure, ester at low pressure (/). Copper chromite is usually the catalyst of choice. Details for the preparation of this catalyst (/7) and a detailed procedure for hydrogenation of ethyl adipate to hexamethylene glycol (/[Pg.80]

Hydrogenolyses of carboxylic acids and esters to the corresponding aldehydes seems very attractive due to their simplicity. Copper chromites are the most widely used catalysts.15 Raney copper and zinc oxide-chromium oxide have also been used for this process.16-18 The hydrogenolysis of methyl benzoate to benzaldehyde was studied on various metal oxides at 300-350°C. ZnO, Zr02 and Ce02 presented high activities and selectivities (Scheme 4.8). [Pg.124]

Interestingly, the Fischer indole synthesis does not easily proceed from acetaldehyde to afford indole. Usually, indole-2-carboxylic acid is prepared from phenylhydrazine with a pyruvate ester followed by hydrolysis. Traditional methods for decarboxylation of indole-2-carboxylic acid to form indole are not environmentally benign. They include pyrolysis or heating with copper-bronze powder, copper(I) chloride, copper chromite, copper acetate or copper(II) oxide, in for example, heat-transfer oils, glycerol, quinoline or 2-benzylpyridine. Decomposition of the product during lengthy thermolysis or purification affects the yields. [Pg.52]

Catalyst, alumina, 34, 79 35, 73 ammonium acetate, 31, 25, 27 copper chromite, 31, 32 36, 12 cuprous oxide-silver oxide, 36, 36, 37 ferric nitrate, hydrated, 31, 53 piperidine, 31, 35 piperidine acetate, 31, 57 Raney nickel, 36, 21 sulfuric acid, 34, 26 Catechol, 33, 74 Cetylmalonic acid, 34, 16 Cetylmalonic ester, 34,13 Chlorination, by sulfuryl chloride, 33, 45 ... [Pg.46]

Catalysts suitable specifically for reduction of carbon-oxygen bonds are based on oxides of copper, zinc and chromium Adkins catalysts). The so-called copper chromite (which is not necessarily a stoichiometric compound) is prepared by thermal decomposition of ammonium chromate and copper nitrate [50]. Its activity and stability is improved if barium nitrate is added before the thermal decomposition [57]. Similarly prepared zinc chromite is suitable for reductions of unsaturated acids and esters to unsaturated alcohols [52]. These catalysts are used specifically for reduction of carbonyl- and carboxyl-containing compounds to alcohols. Aldehydes and ketones are reduced at 150-200° and 100-150 atm, whereas esters and acids require temperatures up to 300° and pressures up to 350 atm. Because such conditions require special equipment and because all reductions achievable with copper chromite catalysts can be accomplished by hydrides and complex hydrides the use of Adkins catalyst in the laboratory is very limited. [Pg.9]

In contrast to phenolic hydroxyl, benzylic hydroxyl is replaced by hydrogen very easily. In catalytic hydrogenation of aromatic aldehydes, ketones, acids and esters it is sometimes difficult to prevent the easy hydrogenolysis of the benzylic alcohols which result from the reduction of the above functions. A catalyst suitable for preventing hydrogenolysis of benzylic hydroxyl is platinized charcoal [28], Other catalysts, especially palladium on charcoal [619], palladium hydride [619], nickel [43], Raney nickel [619] and copper chromite [620], promote hydrogenolysis. In the case of chiral alcohols such as 2-phenyl-2-butanol hydrogenolysis took place with inversion over platinum and palladium, and with retention over Raney nickel (optical purities 59-66%) [619]. [Pg.79]

Acyloins were converted to mixtures of stereoisomeric vicinal diols by catalytic hydrogenation over copper chromite [972]. More frequently they were reduced to ketones by zinc (yield 77%) [913, 914], by zinc amalgam (yields 50-60%) [975], by tin (yields 86-92%) [173], or by hydriodic acid by refluxing with 47% hydriodic acid in glacial acetic acid (yields 70-90%) [916], or by treatment with red phosphorus and iodine in carbon disulfide at room temperature (yields 80-90%) [917] Procedure 41, p. 215). Since acyloins are readily accessible by reductive condensation of esters (p. 152) the above reductions provide a very good route to ketones and the best route to macro-cyclic ketones [973]. [Pg.125]

Complete reduction of unsaturated esters to sativated alcohols takes place when the esters are hydrogenated over Raney nickel at 50° and 150-200 atm [44] or over copper chromite at temperatures of 250-300° and pressures of 300-3 50 atm [52,1056] (p. 153). In contrast to most examples in the literature the reduction of ethyl oleate was achieved at atmospheric pressure and 270-280° over copper chromite, giving 80-90% yield of octadecanol [1074]. a.,P-Unsaturated lactones are reduced to saturated ethers or alcohols, depending... [Pg.157]

Usually alcohols accompany aldehydes in reductions with lithium aluminum hydride [1104] or sodium bis 2-methoxyethoxy)aluminum hydride [544], or in hydrogenolytic cleavage of trifluoroacetylated amines [7772]. Thus terr-butyl ester of. -(. -trifluoroacetylprolyl)leucine was cleaved on treatment with sodium borohydride in ethanol to rerr-butyl ester of A7-prolylleucine (92% yield) and trifluoroethanol [7772]. During catalytic hydrogenations over copper chromite, alcohols sometimes accompany amines that are the main products [7775]. [Pg.166]

Hydrogenation of esters, with copper chromite and Raney nickel, 8, 1 Hydrohalogenation, 13, 4 Hydroxyaldehydes, aromatic, 28, 1 a-Hydroxyalkylation of activated olefins, 51, 2... [Pg.590]

Fatty ester or fatty acids Fatty alcohols Copper chromite 473 to 573 9.7 10... [Pg.304]


See other pages where Copper chromite esters is mentioned: [Pg.111]    [Pg.872]    [Pg.446]    [Pg.448]    [Pg.512]    [Pg.220]    [Pg.85]    [Pg.389]    [Pg.603]    [Pg.1551]    [Pg.872]    [Pg.274]    [Pg.91]    [Pg.157]    [Pg.837]    [Pg.134]    [Pg.441]    [Pg.11]    [Pg.77]    [Pg.153]    [Pg.160]    [Pg.161]    [Pg.593]    [Pg.22]    [Pg.337]    [Pg.1214]    [Pg.330]    [Pg.872]    [Pg.460]    [Pg.7]    [Pg.188]    [Pg.389]   
See also in sourсe #XX -- [ Pg.153 , Pg.154 , Pg.156 , Pg.157 , Pg.197 ]




SEARCH



Chromite

© 2024 chempedia.info