Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper-catalyzed mechanisms

Although sulfonyl chlorides add readily to unactivated olefins, with vinylic monomers telomeric and/or polymeric products were observed. This difficulty has been overcome by carrying out the addition in the presence of catalytic amounts of CuCl2, so as to provide a general and convenient synthesis of /5-chlorosulfones (Asscher-Vofsi reaction)63. For the copper-catalyzed system a redox-transfer mechanism has been suggested in which the... [Pg.1104]

Scheme 3. Mechanism of Copper Catalyzed Formation of PBDD from Polybrominated Diphenyl Ethers. Scheme 3. Mechanism of Copper Catalyzed Formation of PBDD from Polybrominated Diphenyl Ethers.
These copper-catalyzed reactions are generally applicable to aryl halides with either EWG or ERG substituents. The order of reactivity is I > Br> Cl > 0S02R, which is consistent with an oxidative addition mechanism. [Pg.1044]

Kachur, A., Koch, C., and Biaglow, J., Mechanism of copper-catalyzed oxidation of glutathione, Free Radic Res, 28 (3), 259-269, 1998. [Pg.423]

C/H-insertions have been reported to occur in copper-catalyzed reactions between diazomalonates and cyclohexene as well as some alkylated derivatives 9,57. Some acyclic alkenes behave similarly9, but not so 1,1-dicyclopropylethylene150), An abstraction/recombination mechanism via intermediates of type 103 has been proposed53 which would account not only for the three insertion products 104-106... [Pg.130]

Intramolecular oxonium ylide formation is assumed to initialize the copper-catalyzed transformation of a, (3-epoxy diazomethyl ketones 341 to olefins 342 in the presence of an alcohol 333 . The reaction may be described as an intramolecular oxygen transfer from the epoxide ring to the carbenoid carbon atom, yielding a p,y-unsaturated a-ketoaldehyde which is then acetalized. A detailed reaction mechanism has been proposed. In some cases, the oxonium-ylide pathway gives rise to additional products when the reaction is catalyzed by copper powder. If, on the other hand, diazoketones of type 341 are heated in the presence of olefins (e.g. styrene, cyclohexene, cyclopen-tene, but not isopropenyl acetate or 2,3-dimethyl-2-butene) and palladium(II) acetate, intermolecular cyclopropanation rather than oxonium ylide derived chemistry takes place 334 ). [Pg.210]

The EfZ ratio of stilbenes obtained in the Rh2(OAc)4-catalyzed reaction was independent of catalyst concentration in the range given in Table 22 357). This fact differs from the copper-catalyzed decomposition of ethyl diazoacetate, where the ratio diethyl fumarate diethyl maleate was found to depend on the concentration of the catalyst, requiring two competing mechanistic pathways to be taken into account 365), The preference for the Z-stilbene upon C ClO -or rhodium-catalyzed decomposition of aryldiazomethanes may be explained by the mechanism given in Scheme 39. Nucleophilic attack of the diazoalkane at the presumed metal carbene leads to two epimeric diazonium intermediates 385, the sterically less encumbered of which yields the Z-stilbene after C/C rotation 357,358). Thus, steric effects, favoring 385a over 385 b, ultimately cause the preferred formation of the thermodynamically less stable cis-stilbene. [Pg.225]

Scheme 2 Proposed mechanism for copper-catalyzed ATRA... Scheme 2 Proposed mechanism for copper-catalyzed ATRA...
A conveniently prepared amorphous silica-supported titanium catalyst exhibits activity similar to that of Ti-substituted zeolites in the epoxidation of terminal linear and bulky alkenes such as cyclohexene (22) <00CC855>. An unusual example of copper-catalyzed epoxidation has also been reported, in which olefins are treated with substoichiometric amounts of soluble Cu(II) compounds in methylene chloride, using MCPBA as a terminal oxidant. Yields are variable, but can be quite high. For example, cis-stilbene 24 was epoxidized in 90% yield. In this case, a mixture of cis- and /rans-epoxides was obtained, suggesting a step-wise radical mechanism <00TL1013>. [Pg.55]

Various approaches to epoxide also show promise for the preparation of chiral aziridines. Identification of the Cu(I) complex as the most effective catalyst for this process has raised the possibility that aziridination might share fundamental mechanistic features with olefin cyclopropanation.115 Similar to cyclo-propanation, in which the generally accepted mechanism involves a discrete Cu-carbenoid intermediate, copper-catalyzed aziridation might proceed via a discrete Cu-nitrenoid intermediate as well. [Pg.255]

Scheme 1. General mechanism for the copper-catalyzed cyclopropanation of alkenes using diazoesters. Scheme 1. General mechanism for the copper-catalyzed cyclopropanation of alkenes using diazoesters.
The mesityl diimine 88d was as effective a ligand in the aziridination as the 2,6-dichlorophenyl diimine 88a ( 65% ee vs 66% ee) (61). The bound face of the styrene undergoes aziridination (in contrast with Fu s selective crystallization of the wrong face of styrene in his copper-catalyzed cyclopropanation reaction, cf. Section II.A.8). Unfortunately, the potential racemization of 118 (by the mechanism... [Pg.44]

Scheme 6. Proposed mechanism for copper-catalyzed carbenoid transfer to imines and competing pyrrolidine formation. [Adapted from (87).]... Scheme 6. Proposed mechanism for copper-catalyzed carbenoid transfer to imines and competing pyrrolidine formation. [Adapted from (87).]...
Scheme 8. General mechanism of the copper-catalyzed allylic oxidation of alkenes (Kharasch-Sosnovsky reaction). Scheme 8. General mechanism of the copper-catalyzed allylic oxidation of alkenes (Kharasch-Sosnovsky reaction).
In a context of industrial interest, the copper-catalyzed addition of acetic acid36 to 1 (hydroacetoxylation) in the absence of oxygen was shown to be non-regioselective, a 1 0.5 mixture of 1,2- and 1,4-addition products being obtained in a yield of 60% based on butadiene. The effect of various additives on the regiochemistry and the yield has been carefully studied. The butadiene conversion was mainly efficient with the CuBr-LiBr catalytic system (equation 12). The role of the catalyst in the reaction mechanism has been discussed but not fully understood. It has been shown that the dominant formation... [Pg.552]

The study of the molecular weight of the intermediate course is an effective method for the classification of polymerization as chain or stepwise reaction. In Figure 3, the molecular weight of the obtained polymer is plotted against the yield, for the oxidative polymerization of dimethylphenol with the copper catalyst and for the electro-oxidative polymerization. The molecular weight rises sharply in the last stage of the reaction for the copper-catalyzed polymerization. This behavior is explained by a stepwise growth mechanism. [Pg.178]

Kinetic experiments have been performed on a copper-catalyzed substitution reaction of an alkyl halide, and the reaction rate was found to be first order in the copper salt, the halide, and the Grignard reagent [121]. This was not the case for a silver-catalyzed substitution reaction with a primary bromide, in which the reaction was found to be zero order in Grignard reagents [122]. A radical mechanism might be operative in the case of the silver-catalyzed reaction, whereas a nucleophilic substitution mechanism is suggested in the copper-catalyzed reaction [122]. The same behavior was also observed in the stoichiometric conjugate addition (Sect. 10.2.1) [30]. [Pg.330]

A copper-centered mechanism for the Cu-TEMPO-catalyzed aerobic oxidation of alcohols was proposed by Sheldon and co-workers, wherein the active catalytic Cu" species is generated by oxidation of a Cu species with TEMPO, in the presence of alcohol, with formation of TEMPOH (Scheme 3) [146]. The resulting Cu" species is then capable of oxidizing the alcoholate to the aldehyde or ketone species. Regeneration of the TEMPO radical species was achieved by rapid oxidation of TEMPOH with O2. [Pg.41]


See other pages where Copper-catalyzed mechanisms is mentioned: [Pg.369]    [Pg.1030]    [Pg.1043]    [Pg.319]    [Pg.793]    [Pg.836]    [Pg.186]    [Pg.316]    [Pg.1]    [Pg.5]    [Pg.14]    [Pg.55]    [Pg.109]    [Pg.145]    [Pg.318]    [Pg.50]    [Pg.109]    [Pg.145]    [Pg.318]    [Pg.436]    [Pg.18]    [Pg.160]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Copper catalyzed aerobic reaction mechanism

Copper, mechanically

Copper-catalyzed allylic substitution mechanism

Copper-catalyzed azide-alkyne cycloaddition mechanisms

Cyclopropanation copper-catalyzed mechanisms

© 2024 chempedia.info