Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper catalyzed catalytic asymmetric

Tlie constrLiction of carbocydic cotnpoutidi by ring-annulation procedures frequently plays a prominent role in total syntliesis. Tlie tolerance of various functional groups in tlie zinc reagents employed in copper-catalyzed asymmetric 1,4-additions fornis tlie basis for tliree novd catalytic enantioselective annulation metliods discussed bete. [Pg.252]

Pro-chiral pyridine A-oxides have also been used as substrates in asymmetric processes. Jprgensen and co-workers explored the catalytic asymmetric Mukaiyama aldol reaction between ketene silyl acetals 61 and pyridine A-oxide carboxaldehydes 62 <06CEJ3472>. The process is catalyzed by a copper(II)-bis(oxazoline) complex 63 which gave good yields and diastereoselectivities with up to 99% enantiomeric excess. [Pg.324]

Shibasaki et al. also developed catalytic reactions of copper, some of which can be applied to catalytic asymmetric reactions. Catalytic aldol reactions of silicon enolates to ketones proceed using catalytic amounts of CuF (2.5 mol%) and a stoichiometric amount of (EtO)3SiF (120 mol%) (Scheme 104).500 Enantioselective alkenylation catalyzed by a complex derived from CuF and a chiral diphosphine ligand 237 is shown in Scheme 105.501 Catalytic cyanomethyla-tion by using TMSCH2CN was also reported, as shown in Scheme 106.502... [Pg.475]

Certain transition metal complexes catalyze the decomposition of diazo compounds. The metal-bonded carbene intermediates behave differently from the free species generated via photolysis or thermolysis of the corresponding carbene precursor. The first catalytic asymmetric cyclopropanation reaction was reported in 1966 when Nozaki et al.93 showed that the cyclopropane compound trans- 182 was obtained as the major product from the cyclopropanation of styrene with diazoacetate with an ee value of 6% (Scheme 5-56). This reaction was effected by a copper(II) complex 181 that bears a salicyladimine ligand. [Pg.314]

The catalytic asymmetric aldol reaction has been applied to the LASC system, which uses copper bis(-dodecyl sulfate) (4b) instead of CufOTf. 1261 An example is shown in Eq. 6. In this case, a Bronsted add, such as lauric add, is necessary to obtain a good yield and enantioseledivity. This example is the first one involving Lewis acid-catalyzed asymmetric aldol reactions in water without using organic solvents. Although the yield and the selectivity are still not yet optimized, it should be noted that this appredable enantioselectivity has been attained at ambient temperature in water. [Pg.10]

The development of this reaction over the subsequent 50 years placed it, along with the Rh(II) variant, as the method of choice for the catalytic cyclopropanation of alkenes. A number of reviews have recently appeared detailing the advances in cyclopropanation (5-10). This reaction remains one of the most recognizable copper-catalyzed asymmetric transformations as evidenced by the plethora of publications utilizing it as a testing ground for new ligands. [Pg.5]

The seminal report of an asymmetric homogeneous metal-catalyzed reaction described the copper-catalyzed group-transfer reaction from a diazoester to an alkene, Eq. 3 (2). This article provided experimental verification of the intervention of copper carbenoid olefin complexes in the catalytic decomposition of diazo com-... [Pg.6]

Catalytic asymmetric cyclopropanations via carbene transfer to alkenes were reviewed by Singh and co-workers in 1997," Doyle and Protopopova in 1998," and mostly recently by Doyle in 2000." The reaction can be catalyzed by copper," rhodium," and other metals." Bis(oxazolines) are known to be among the most effective ligands for this cyclopropanation reaction (see Chapter 9). [Pg.504]

Ferrocene-derived ligand (l ,S)-Josiphos, which is widely used for catalytic asymmetric hydrogenation reactions, is also a good catalyst for the asymmetric copper-catalyzed 1,4-addition. Reaction in f-BuOMe in the presence of 6 mol% of this ligand gives products with up to 98%. ... [Pg.564]

Highly efficient catalytic asymmetric cyclopropanation can be effected with copper catalysts complexed with ligands of type 2.3 These bis(oxazolines) are prepared by reaction of dimethylmalonyl dichloride with an a-amino alcohol. As in the case of ligands of type 1, particularly high stereoselectivity obtains when R is /-butyl. Cyclopropanation of styrene with ethyl diazoacetate catalyzed by copper complexed with... [Pg.39]

Scheme 12.2. Catalytic asymmetric version of the copper-catalyzed reaction. Scheme 12.2. Catalytic asymmetric version of the copper-catalyzed reaction.
The peptidic phosphine ligands that had been introduced by Hoveyda and co-workers271 for enantioselective copper-catalyzed Michael additions (see Section 9.12.2.2.1) were also employed successfully in silver-catalyzed asymmetric Mannich reactions.3 Thus, the aryl-substituted imines 372 reacted with various silyl enol ethers in the presence of stoichiometric amounts of isopropanol, as well as catalytic amounts of silver acetate and ligand 373 to... [Pg.556]

Zeitler K (2006) Stereoselective synthesis of (E)-afi—unsaturated esters via carbene-catalyzed redox esterification. Qrg Lett 8 637-640 Zeitler K, Mager I (2007) An efficient and versatile approach for the immobilization of carbene precursors via copper-catalyzed [3+2]-cycloaddition and their catalytic apphcation. Adv Synth Cat 349 1851-1857 Zhao GL, Cordova A (2007) A one-pot combination of amine and heterocyclic carbene catalysis direct asymmetric synthesis of fi-hydroxy and fS-malonale esters from a,fS-unsaturated aldehydes. Tetrahedron Lett 48 5976-5980 Zhou ZZ, Ji FQ, Cao M, Yang GF (2006) An efficient intramolecular Stetter reaction in room temperature ionic liquids promoted by microwave irradiation. Adv Synth Cat 348 1826-1830... [Pg.206]

Implied in the stoichiometry of their preparation is the full equivalent of transition metal relative to substrate. Indeed, to this day, cuprates tend to be used in excess in most smaller scale reactions. Over the past decade, however, there has been a noticeable shift toward development of methodology catalytic in Cu(I). The rationale behind the emphasis is in line with the times that is, environmental concerns have come to the fore, placing implied limits on the extent of transition metal usage. Therefore, notwithstanding favorable economic factors associated with copper, it being a base rather than precious metal, much effort has been devoted toward copper-catalyzed reactions, including cross-couplings to arrive at C-N, C-O, and C-H, in addition to C-C bonds. Moreover, tremendous strides have been made in asymmetric versions of perhaps the most fundamental of cuprate reactions 1,4-additions to Michael acceptors. [Pg.960]


See other pages where Copper catalyzed catalytic asymmetric is mentioned: [Pg.18]    [Pg.18]    [Pg.130]    [Pg.133]    [Pg.97]    [Pg.175]    [Pg.130]    [Pg.133]    [Pg.134]    [Pg.111]    [Pg.60]    [Pg.130]    [Pg.133]    [Pg.134]    [Pg.55]    [Pg.507]    [Pg.500]    [Pg.704]    [Pg.277]    [Pg.359]    [Pg.384]    [Pg.171]    [Pg.42]    [Pg.75]    [Pg.130]    [Pg.133]    [Pg.134]    [Pg.598]    [Pg.231]    [Pg.2]   


SEARCH



Asymmetric catalytic

Catalytic copper

Copper-catalyzed asymmetric

© 2024 chempedia.info