Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coordinates 194 Subject

Results from an explicit in time finite different solution for Fick s second law in radial coordinates subject to the boundary and initial conditions in Eqs. (87)-(89) (where C0>C1 and C,=0) is shown in Fig. 7. At late time mass leaves the sphere much more slowly when nF[Pg.22]

A reactive species in liquid solution is subject to pemianent random collisions with solvent molecules that lead to statistical fluctuations of position, momentum and internal energy of the solute. The situation can be described by a reaction coordinate X coupled to a huge number of solvent bath modes. If there is a reaction... [Pg.832]

Kramers solution of the barrier crossing problem [45] is discussed at length in chapter A3.8 dealing with condensed-phase reaction dynamics. As the starting point to derive its simplest version one may use the Langevin equation, a stochastic differential equation for the time evolution of a slow variable, the reaction coordinate r, subject to a rapidly statistically fluctuating force F caused by microscopic solute-solvent interactions under the influence of an external force field generated by the PES F for the reaction... [Pg.848]

Calculations within tire framework of a reaction coordinate degrees of freedom coupled to a batli of oscillators (solvent) suggest tliat coherent oscillations in the electronic-state populations of an electron-transfer reaction in a polar solvent can be induced by subjecting tire system to a sequence of monocliromatic laser pulses on tire picosecond time scale. The ability to tailor electron transfer by such light fields is an ongoing area of interest [511 (figure C3.2.14). [Pg.2987]

This section attempts a brief review of several areas of research on the significance of phases, mainly for quantum phenomena in molecular systems. Evidently, due to limitation of space, one cannot do justice to the breadth of the subject and numerous important works will go unmentioned. It is hoped that the several cited papers (some of which have been chosen from quite recent publications) will lead the reader to other, related and earlier, publications. It is essential to state at the outset that the overall phase of the wave function is arbitrary and only the relative phases of its components are observable in any meaningful sense. Throughout, we concentrate on the relative phases of the components. (In a coordinate representation of the state function, the phases of the components are none other than the coordinate-dependent parts of the phase, so it is also true that this part is susceptible to measurement. Similar statements can be made in momentum, energy, etc., representations.)... [Pg.101]

Now, consider the case of spinless particles not subject to external electronic and magnetic fields. We may now choose the unitai7 operator U as the unit operator, that is, T = K. For the coordinate and momentum operators, one then obtains... [Pg.616]

We can now proceed to the generation of conformations. First, random values are assigne to all the interatomic distances between the upper and lower bounds to give a trial distam matrix. This distance matrix is now subjected to a process called embedding, in which tl distance space representation of the conformation is converted to a set of atomic Cartesic coordinates by performing a series of matrix operations. We calculate the metric matrix, each of whose elements (i, j) is equal to the scalar product of the vectors from the orig to atoms i and j ... [Pg.485]

Finally, if there could be a way in which in water selective ri Jt-coordination to the carbonyl group of an a,P-imsatLirated ketone can be achieved, this would be a breakthrough, since it would subject monodentate reactants to catalysis by hard Lewis acids ". ... [Pg.169]

Chlorobenzenes activated by coordination of Cr(CO)3 react with terminal alkynes[253). The 1-bromo-1,2-alkadiene 346 reacts with a terminal alkyne to afford the alka-l,2-dien-4-yne 347[254], Enol tritlates are used for the coupling with terminal alkynes. Formation of 348 in the syntheses of ginkgolide[255] and of vitamin D are examples[256] Aryl and alkenyl fluorides are inert. Only bromide or iodide is attacked when the fluoroiodoalkene 349 or fluoroiodoar-ene is subjected to the Pd-catalyzed coupling with alkynes[257-259]. [Pg.176]

Figure 2.7 Potential energy as a function of location along the reaction coordinate. The solid line describes an undisturbed liquid the broken line applies to liquids subjected to shearing force. Figure 2.7 Potential energy as a function of location along the reaction coordinate. The solid line describes an undisturbed liquid the broken line applies to liquids subjected to shearing force.
We begin the mathematical analysis of the model, by considering the forces acting on one of the beads. If the sample is subject to stress in only one direction, it is sufficient to set up a one-dimensional problem and examine the components of force, velocity, and displacement in the direction of the stress. We assume this to be the z direction. The subchains and their associated beads and springs are indexed from 1 to N we focus attention on the ith. The absolute coordinates of the beads do not concern us, only their displacements. [Pg.185]

Thermodynamic properties (71,72), force constants (73), and infrared absorption characteristics (74) are documented. The coordinatively unsaturated species, Ni(CO)2 and Ni(CO)2, also exist and the bonding and geometry data have been subjected to molecular orbital treatments (75,76). [Pg.11]

Coordinate Indexing and Boolean Logic. Three methods of indexing have been prominent in the chemical Hterature in recent times. The first, articulated indexing, has been used in printed Chemicaly hstracts subject indexes from their earliest days until well into the 1990s. A number of important concepts are identified as permissible index entries, including specific compounds, material types, reactions, and processes. One or more modifying statements foUow each basic index entry. Thus, eg. [Pg.59]

Like mthenium, amines coordinated to osmium in higher oxidation states such as Os(IV) ate readily deprotonated, as in [Os(en) (NHCH2CH2NH2)] [111614-75-6], This complex is subject to oxidative dehydrogenation to form an imine complex (105). An unusual Os(IV) hydride, [OsH2(en)2] [57345-94-5] has been isolated and characterized. The complexes of aromatic heterocycHc amines such as pyridine, bipytidine, phenanthroline, and terpyridine ate similar to those of mthenium. Examples include [Os(bipy )3 [23648-06-8], [Os(bipy)2acac] [47691-08-7],... [Pg.178]

The general criterion of chemical reaction equiUbria is the same as that for phase equiUbria, namely that the total Gibbs energy of a closed system be a minimum at constant, uniform T and P (eq. 212). If the T and P of a siagle-phase, chemically reactive system are constant, then the quantities capable of change are the mole numbers, n. The iadependentiy variable quantities are just the r reaction coordinates, and thus the equiUbrium state is characterized by the rnecessary derivative conditions (and subject to the material balance constraints of equation 235) where j = 1,11,.. ., r ... [Pg.501]

Most mordant dyes are monoazo stmctures. The most important feature of this class of dyes is excellent fastness to light and washing. Mordant dyes are available ia aU shades of the spectmm with the exceptioa of bright violets, blues, and greens. To be useful, the metal complexes must be stable, ie, must not demetallize when subjected to dyebath conditions and aU aftertreatment processes, especially repeated washings. Chromium forms stable chelate rings with mordant dyes which are not affected by treatment with either weak acid or alkaU (see Coordination compounds). [Pg.436]

The terminal equipment connected on the secondary side of the transformer is thus automatically protected as it is subject to much less and attenuated severity of the transferred surges than the secondary windings of the transformer. Nevertheless, the BIL of the interconnec-ting cables and the terminal equipment must be properly coordinated with the BIL of the transformer secondary, particularly for larger installations, say, 50 MVA and above, to be absolutely safe. Example 18,2 will explain the procedure. [Pg.601]


See other pages where Coordinates 194 Subject is mentioned: [Pg.118]    [Pg.542]    [Pg.57]    [Pg.58]    [Pg.35]    [Pg.36]    [Pg.16]    [Pg.144]    [Pg.606]    [Pg.1031]    [Pg.1193]    [Pg.110]    [Pg.599]    [Pg.55]    [Pg.209]    [Pg.386]    [Pg.474]    [Pg.494]    [Pg.556]    [Pg.556]    [Pg.598]    [Pg.600]    [Pg.162]    [Pg.585]    [Pg.433]    [Pg.177]    [Pg.178]    [Pg.504]    [Pg.261]    [Pg.480]    [Pg.264]    [Pg.486]    [Pg.365]    [Pg.557]   


SEARCH



Coordinated ligands Subject

Coordination compounds Subject

Coordination polyhedra Subject

Subject coordinators

Subject coordinators

Subject spherical coordinates

© 2024 chempedia.info