Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coordinate absolute

Reaction Coordinate (Absolute reaction rate theory)... [Pg.201]

To summarize, in general both types of coordinates, absolute and relative ones, are required to evaluate the equations of motion. This section described an effective way to obtain relative accelerations q given the relative coordinates at time t ... [Pg.29]

As in the case of dipole moment derivatives widi respect to normal coordinates, absolute values of a. and only can be evaluated from the experiment. Extended basis set ab initio MO calculations of polarizability derivatives are usually employed in solving the sign ambiguity problem. [Pg.203]

With 3D-CTVicwer the export of slice-contours from parts inside the data volume is possible via the DXF-format. From these contours a two-dimensional comparison to the CAD geometry is possible if the coordinate system and the absolute scaling between both methods are well known. [Pg.495]

Figure 9. Energy difference (absolute value) between the components of the X II electronic State of HCCS as a function of coordinates p, P2, and y. Curves represent the square root of the second of functions given by Eq. (77) (with e, = —0.011, 2 = 0.013, 8,2 = 0.005325) for fixed values of coordinates p, and P2 (attached at each curve) and variable Y = 4>2 Here y = 0 corresponds to cis-planar geometry and y = 71 to trans-planar geometry. Symbols results of explicit ab initio calculations. Figure 9. Energy difference (absolute value) between the components of the X II electronic State of HCCS as a function of coordinates p, P2, and y. Curves represent the square root of the second of functions given by Eq. (77) (with e, = —0.011, 2 = 0.013, 8,2 = 0.005325) for fixed values of coordinates p, and P2 (attached at each curve) and variable Y = 4>2 Here y = 0 corresponds to cis-planar geometry and y = 71 to trans-planar geometry. Symbols results of explicit ab initio calculations.
To obtain the Hamiltonian at zeroth-order of approximation, it is necessary not only to exclude the kinetic energy of the nuclei, but also to assume that the nuclear internal coordinates are frozen at R = Ro, where Ro is a certain reference nucleai configuration, for example, the absolute minimum or the conical intersection. Thus, as an initial basis, the states t / (r,s) = t / (r,s Ro) are the eigenfunctions of the Hamiltonian s, R ). Accordingly, instead of Eq. (3), one has... [Pg.558]

The Boltzmann constant is ks and T the absolute temperature. — is the Dirac delta function. Below we assume for convenience (equation (5)) that the delta function is narrow, but not infinitely narrow. The random force has a zero mean and no correlation in time. For simplicity we further set the friction to be a scalar which is independent of time or coordinates. [Pg.265]

For each combination of atoms i.j, k, and I, c is defined by Eq. (29), where X , y,. and Zj are the coordinates of atom j in Cartesian space defined in such a way that atom i is at position (0, 0, 0), atomj lies on the positive side of the x-axis, and atom k lies on the xy-plaiic and has a positive y-coordinate. On the right-hand side of Eq. (29), the numerator represents the volume of a rectangular prism with edges % , y ., and Zi, while the denominator is proportional to the surface of the same solid. If X . y ., or 2 has a very small absolute value, the set of four atoms is deviating only slightly from an achiral situation. This is reflected in c, which would then take a small absolute value the value of c is conformation-dependent because it is a function of the 3D atomic coordinates. [Pg.424]

In order to define how the nuclei move as a reaction progresses from reactants to transition structure to products, one must choose a definition of how a reaction occurs. There are two such definitions in common use. One definition is the minimum energy path (MEP), which defines a reaction coordinate in which the absolute minimum amount of energy is necessary to reach each point on the coordinate. A second definition is a dynamical description of how molecules undergo intramolecular vibrational redistribution until the vibrational motion occurs in a direction that leads to a reaction. The MEP definition is an intuitive description of the reaction steps. The dynamical description more closely describes the true behavior molecules as seen with femtosecond spectroscopy. [Pg.159]

We begin the mathematical analysis of the model, by considering the forces acting on one of the beads. If the sample is subject to stress in only one direction, it is sufficient to set up a one-dimensional problem and examine the components of force, velocity, and displacement in the direction of the stress. We assume this to be the z direction. The subchains and their associated beads and springs are indexed from 1 to N we focus attention on the ith. The absolute coordinates of the beads do not concern us, only their displacements. [Pg.185]

Viscosities of Gases Coordinates for Use with Fig. 2-32.. . . Nomograph for Determining a) Absolute Viscosity of a Gas as a Function of Temperature Near Ambient Pressure and (h) Relative Viscosity of a Gas Compared... [Pg.49]

The terminal equipment connected on the secondary side of the transformer is thus automatically protected as it is subject to much less and attenuated severity of the transferred surges than the secondary windings of the transformer. Nevertheless, the BIL of the interconnec-ting cables and the terminal equipment must be properly coordinated with the BIL of the transformer secondary, particularly for larger installations, say, 50 MVA and above, to be absolutely safe. Example 18,2 will explain the procedure. [Pg.601]

The equation of motion as given in terms of angular momentum can be transformed into other forms that are more convenient to understanding some of the basic design components. To understand the flow in a turbomachine, the concepts of aboslute and relative velocity must be grasped. Absolute velocity (V) is gas velocity with respect to a stationary coordinate system. Relative velocity (IV) is the velocity relative to the rotor. In turbomachinery. [Pg.119]

A model for the mechanism of the highly enantioselective AlMe-BINOL-cata-lyzed 1,3-dipolar cycloaddition reaction was proposed as illustrated in Scheme 6.13. In the first step nitrone la coordinates to the catalyst 11b to form intermediate 12. In intermediate 13, which is proposed to account for the absolute stereoselectivity of this reaction, it is apparent that one of the faces of the nitrone, the si face, is shielded by the ligand whereas the re face remains available... [Pg.220]

A model for the intermediate consisting of substrates 36 and 8a coordinated to catalyst 37a was proposed as shown in Scheme 6.30 [74]. In the model 39 the two triflate ligands are dissociated from copper. The ligands are arranged around copper as a trigonal bipyramid and it should be noted that in this model the oxygen atom of the vinyl ether 8a also coordinates to the metal center. However, another tetrahedral intermediate consisting of only the catalyst and the nitrone could also account for the absolute selectivity of the reaction. [Pg.233]

Very often, the axes of the new coordinate system, or factor space are chosen to be mutually orthogonal, but this is not an absolute requirement. Of the above examples, the axes chosen for 3 and S are generally not mutually orthogonal. [Pg.80]

An interesting approach to studies of the effects of coordination on the reactivity of lithium polydienes in hydrocarbon solvents was developed by Erussalimski and his colleagues 151 154 The polymerization of lithium polyisoprene in hexane is accelerated by the addition of TMEDA152), the rate levels off at a value of R = [TMEDA]/[li-thium polyisoprene] of 8, its final value giving the absolute rate constant of propagation of the polyisoprene coordinated with TMEDA, namely 0.17 M7l s at 20 °C. [Pg.137]

Binaphthol-derived titanium complexes [64], prepared from chiral ligands 65 (Figure 3.13), also performed very well in the cycloadditions of conjugated aldehydes with cyclic and acyclic dienes. Judging from the absolute configurations of endo and exo adducts, this catalyst should cover the re-face of carbonyl on its u tz-coordination to s-trans a,/l-unsaturated aldehydes, and hence dienes should approach selectively from the si-face. [Pg.120]

The mechanism of this unusual process has been studied in some detail. Absolute rate constants for the spontaneous reaction of (TMSlgSiH with molecular oxygen (Reaction 33) has been determined to be at 70 °C and theoretical studies elucidate the reaction coordinates. ... [Pg.133]

Overdetermination of the system of equations is at the heart of regression analysis, that is one determines more than the absolute minimum of two coordinate pairs (xj/yi) and xzjyz) necessary to calculate a and b by classical algebra. The unknown coefficients are then estimated by invoking a further model. Just as with the univariate data treated in Chapter 1, the least-squares model is chosen, which yields an unbiased best-fit line subject to the restriction ... [Pg.95]

The back-calculated values (also in -coordinates) as absolute and relative values. [Pg.258]

Metal-assisted enantioselective catalytic reactions are one of the most important areas in organic chemistry [1-3]. They require the appropriate design and the preparation of chiral transition metal complexes, a field also of major importance in modern synthetic chemistry. These complexes are selected on both their ability to catalyze a given reaction and their potential as asymmetric inducers. To fulfill the first function, it is absolutely required that the catalysts display accessible metal coordination sites where reactants can bind since activation would result from a direct interaction between the metal ion... [Pg.271]

There are more examples of a second type in which the chirality of the metal center is the result of the coordination of polydentate ligands. The easiest case is that of octahedral complexes with at least two achiral bidentate ligands coordinated to the metal ion. The prototype complex with chirality exclusively at the metal site is the octahedral tris-diimine ruthenium complex [Ru(diimine)3 with diimine = bipyridine or phenanthroline. As shown in Fig. 2 such a complex can exist in two enantiomeric forms named A and A [6,7]. The bidentate ligands are achiral and the stereoisomery results from the hehcal chirality of the coordination and the propeller shape of the complex. The absolute configuration is related to the handness of the hehx formed by the hgands when rotated... [Pg.273]


See other pages where Coordinate absolute is mentioned: [Pg.389]    [Pg.25]    [Pg.247]    [Pg.496]    [Pg.253]    [Pg.400]    [Pg.73]    [Pg.465]    [Pg.200]    [Pg.211]    [Pg.165]    [Pg.170]    [Pg.244]    [Pg.255]    [Pg.267]    [Pg.178]    [Pg.151]    [Pg.204]    [Pg.19]    [Pg.29]    [Pg.94]    [Pg.434]    [Pg.159]    [Pg.28]    [Pg.32]    [Pg.4]    [Pg.124]   
See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Absolute configuration of coordination

Absolute configuration of coordination compounds

Metal coordination compounds, absolute

Relative and Absolute Coordinates

© 2024 chempedia.info