Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cooling release

In Fig. 6.27, the flue gas is cooled to pinch temperature before being released to the atmosphere. The heat releaised from the flue gas between pinch and ambient temperature is the stack loss. Thus, in Fig. 6.27, for a given grand composite curve and theoretical flcune temperature, the heat from fuel amd stack loss can be determined. [Pg.190]

In Figs. 6.27 and 6.28, the flue gas is capable of being cooled to pinch temperature before being released to the atmosphere. This is... [Pg.190]

Dissolve I ml. of benzaldehyde and 0-4 ml. of pure acetone in 10 ml. of methylated spirit contained in a conical flask or widemouthed bottle of about 50 ml. capacity. Dilute 2 ml. of 10% aqueous sodium hydroxide solution with 8 ml. of water, and add this dilute alkali solution to the former solution. Shake the mixture vigorously in the securely corked flask for about 10 minutes (releasing the pressure from time to time if necessary) and then allow to stand for 30 minutes, with occasional shaking finally cool in ice-water for a few minutes. During the shaking, the dibenzal -acetone separates at first as a fine emulsion which then rapidly forms pale yellow crystals. Filter at the pump, wash well with water to eliminate traces of alkali, and then drain thoroughly. Recrystallise from hot methylated or rectified spirit. The dibenzal-acetone is obtained as pale yellow crystals, m.p. 112 yield, o 6 g. [Pg.231]

Now heat the furnace, so that the temperature rises slowly in the course of about 2 hours to 260-270°, and then maintain this temperature for at least another 4 hours. Then turn off the heating, and allow the furnace to cool and remain untouched overnight. A considerable pressure will now exist in the cold tube, and must be released before the tube is removed from the box A on no account must the unopened... [Pg.420]

Method 2. Place a 3 0 g. sample of the mixture of amines in a flask, add 6g. (4-5 ml.) of benzenesulphonyl chloride (or 6 g. of p-toluenesulphonyl chloride) and 100 ml. of a 5 per cent, solution of sodium hydroxide. Stopper the flask and shake vigorously until the odour of the acid chloride has disappeared open the flask occasionally to release the pressure developed by the heat of the reaction. AUow the mixture to cool, and dissolve any insoluble material in 60-75 ml. of ether. If a solid insoluble in both the aqueous and ether layer appears at this point (it is probably the sparingly soluble salt of a primary amine, e.g., a long chain compound of the type CjH5(CH2) NHj), add 25 ml. of water and shake if it does not dissolve, filter it off. Separate the ether and aqueous layers. The ether layer will contain the unchanged tertiary amine and the sulphonamide of the secondary amine. Acidify the alkaline aqueous layer with dilute hydrochloric acid, filter off the sulphonamide of the primary amine, and recrystaUise it from dilute alcohol. Extract the ether layer with sufficient 5 per cent, hydrochloric acid to remove all the tertiary amine present. Evaporate the ether to obtain the sulphonamide of the secondary amine recrystaUise it from alcohol or dilute alcohol. FinaUy, render the hydrochloric acid extract alkaline by the addition of dilute sodium hydroxide solution, and isolate the tertiary amine. [Pg.651]

Several recent patents describe improvements in the basic belt process. In one case a higher soHds polymerization is achieved by cooling the starting monomer until some monomer crystallizes and then introducing the resulting monomer slurry onto the belt as above. The latent heat of fusion of the monomer crystals absorbs some of the heat of polymerization, which otherwise limits the soHds content of the polymerization (87). In another patent a concave belt is described which becomes flat near the end. This change leads to improved release of polymer (88). [Pg.142]

Dehumidification. Dehumidification may be accompHshed in several ways (see Drying). Moderate changes in humidity can be made by exposing the air stream to a surface whose temperature is below the dew point of the air. The air is cooled and releases a portion of its moisture. Closed cycle air conditioning systems normally effect dehumidification also. The cooled air may require reheating to attain the desired dry-bulb temperature if there is insufficient sensible load in the space. [Pg.362]

For most crops, other than rice, urea in the soil must first undergo hydrolysis to ammonia and then nitrification to nitrate before it can be absorbed by plant roots. One problem is that in relatively cool climates these processes are slow thus plants may be slow to respond to urea fertilization. Another problem, more likely in warmer climates, is that ammonia formed in the soil hydrolysis step may be lost as vapor. This problem is particularly likely when surface appHcation is used, but can be avoided by incorporation of the urea under the soil surface. Another problem that has been encountered with urea is phytotoxicity, the poisoning of seed by contact with the ammonia released during urea hydrolysis in the soil. Placement of urea away from the seed is a solution to this problem. In view of the growing popularity of urea, it appears that its favorable characteristics outweigh the extra care requited in its use. [Pg.220]

In 1954 the surface fluorination of polyethylene sheets by using a soHd CO2 cooled heat sink was patented (44). Later patents covered the fluorination of PVC (45) and polyethylene bottles (46). Studies of surface fluorination of polymer films have been reported (47). The fluorination of polyethylene powder was described (48) as a fiery intense reaction, which was finally controlled by dilution with an inert gas at reduced pressures. Direct fluorination of polymers was achieved in 1970 (8,49). More recently, surface fluorinations of poly(vinyl fluoride), polycarbonates, polystyrene, and poly(methyl methacrylate), and the surface fluorination of containers have been described (50,51). Partially fluorinated poly(ethylene terephthalate) and polyamides such as nylon have excellent soil release properties as well as high wettabiUty (52,53). The most advanced direct fluorination technology in the area of single-compound synthesis and synthesis of high performance fluids is currently practiced by 3M Co. of St. Paul, Minnesota, and by Exfluor Research Corp. of Austin, Texas. [Pg.278]

Phase Separation. Microporous polymer systems consisting of essentially spherical, intercoimected voids, with a narrow range of pore and ceU-size distribution have been produced from a variety of thermoplastic resins by the phase-separation technique (127). If a polyolefin or polystyrene is insoluble in a solvent at low temperature but soluble at high temperatures, the solvent can be used to prepare a microporous polymer. When the solutions, containing 10—70% polymer, are cooled to ambient temperatures, the polymer separates as a second phase. The remaining nonsolvent can then be extracted from the solid material with common organic solvents. These microporous polymers may be useful in microfiltrations or as controlled-release carriers for a variety of chemicals. [Pg.408]

Radioactive Gemstones. Zircon can contain radioactive elements, but the amount in jewelry-grade material is insignificant. Some of the treatments of Table 3 may leave irradiated material radioactive. Such gemstones have been released on rare occasions without the required cooling-off period (10). [Pg.223]


See other pages where Cooling release is mentioned: [Pg.49]    [Pg.288]    [Pg.114]    [Pg.319]    [Pg.123]    [Pg.49]    [Pg.288]    [Pg.114]    [Pg.319]    [Pg.123]    [Pg.189]    [Pg.191]    [Pg.262]    [Pg.1094]    [Pg.1098]    [Pg.2473]    [Pg.2473]    [Pg.97]    [Pg.103]    [Pg.106]    [Pg.874]    [Pg.63]    [Pg.113]    [Pg.116]    [Pg.155]    [Pg.195]    [Pg.241]    [Pg.270]    [Pg.568]    [Pg.251]    [Pg.369]    [Pg.367]    [Pg.411]    [Pg.448]    [Pg.503]    [Pg.524]    [Pg.149]    [Pg.377]    [Pg.404]    [Pg.451]    [Pg.494]    [Pg.119]    [Pg.144]    [Pg.179]    [Pg.305]   


SEARCH



© 2024 chempedia.info