Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cooling filaments

The acconunodation coefficient for Kr on a carbon filament is determined experimentally as follows. The electrically heated filament at temperature 72 is stretched down the center of a cylindrical cell containing Kr gas at 7. Gas molecules hitting the filament cool it, and to maintain its temperature a resistance heating of Q cal sec cm is needed. Derive from simple gas kinetic theory the expression... [Pg.672]

Extrusion Processes. Polymer solutions are converted into fibers by extmsion. The dry-extmsion process, also called dry spinning, is primarily used for acetate and triacetate. In this operation, a solution of polymer in a volatile solvent is forced through a number of parallel orifices (spinneret) into a cabinet of warm air the fibers are formed by evaporation of the solvent. In wet extmsion, a polymer solution is forced through a spinneret into a Hquid that coagulates the filaments and removes the solvent. In melt extmsion, molten polymer is forced through a multihole die (pack) into air, which cools the strands into filaments. [Pg.296]

Terephthahc acid (TA) or dimethyl terephthalate [120-61 -6] (DMT) reacts with ethyleae glycol (2G) to form bis(2-hydroxyethyl) terephthalate [959-26-2] (BHET) which is coadeasatioa polymerized to PET with the elimination of 2G. Moltea polymer is extmded through a die (spinneret) forming filaments that are solidified by air cooling. Combinations of stress, strain, and thermal treatments are appHed to the filaments to orient and crystallize the molecular chains. These steps develop the fiber properties required for specific uses. The two general physical forms of PET fibers are continuous filament and cut staple. [Pg.327]

Flow processes iaside the spinneret are governed by shear viscosity and shear rate. PET is a non-Newtonian elastic fluid. Spinning filament tension and molecular orientation depend on polymer temperature and viscosity, spinneret capillary diameter and length, spin speed, rate of filament cooling, inertia, and air drag (69,70). These variables combine to attenuate the fiber and orient and sometimes crystallize the molecular chains (71). [Pg.329]

EOY speeds are the most recent development in PET spinning (78). Properties are similar to HOY and appear to be limited by the differential cooling rate from filament surface to filament core. This leads to radial distribution of viscosity, stress, and, consequentiy, molecular orientation (75). Eiber tensde strength is limited. Nevertheless, speeds up to 7000 m /min are commercial and forecasts are for speeds up to 9000 m /min by the year 2000 (79). Speeds to 9000 m/min have been studied (68,80,81). [Pg.330]

Ba.cteria., A wide variety of bacteria can colonize cooling systems. Spherical, rod-shaped, spiral, and filamentous forms are common. Some produce spores to survive adverse environmental conditions such as dry periods or high temperatures. Both aerobic bacteria (which thrive in oxygenated waters) and anaerobic bacteria (which are inhibited or killed by oxygen) can be found in cooling systems. [Pg.272]

Fungi. Two forms of fungi commonly encountered are molds (filamentous forms) and yeasts (unicellular forms). Molds can be quite troublesome, causing white rot or brown rot of the cooling tower wood, depending on whether they are cellulolytic (attack cellulose) or lignin degrading. Yeasts are also cellulolytic. They can produce slime in abundant amounts and preferentially colonize wood surfaces. [Pg.272]

Polyester (Textured or Filament) Dyed Under Pressure. The dyebath (50°C) is set with water conditioning chemicals as required, acetic acid to ca 5 pH, properly prepared disperse dyes, and 1—3 g carrier/L. The bath is mn for 10 minutes, then the temperature is raised at 2°C/min to 88°C and the equipment is sealed. Temperature is raised at l°C/min to 130°C, and the maximum temperature held for 1/2—1 h according to the fabric and depth of shade required. Cooling to 82°C is done at 1—2°C/min, the machine is depressurized, and the color sampled. The shade is corrected if needed. Slow cooling avoids shocking and setting creases into the fabric. Afterscour is done as needed. [Pg.267]

The SIMS system is mounted on a UHV spectrometer which also has XPS, UPS, LEED and thermal desorption capabilities ( ). Heating is achieved by electron bombardment from a filament mounted on the manipulator behind the sample. Cooling is achieved by circulating liquid N2 or He. Temperatures of 25K can be reached. The samples used, Ni(lOO), Cu(17%) Ni(83%) (100) and (111) and Ag(lll) were oriented within 1 and cleaned in situ by standard heating and Ar ion sputtering procedures. [Pg.319]

The source is usually a temperature-stabilized ceramic filament operating around 1500K. The detector in FTIR is usually a deuterium triglycine sulphate (DTGS) detector, although in RAIRS experiments the liquid nitrogen-cooled mercury cadmium telluride (MCT) detector is employed. [Pg.44]


See other pages where Cooling filaments is mentioned: [Pg.375]    [Pg.375]    [Pg.283]    [Pg.64]    [Pg.19]    [Pg.375]    [Pg.375]    [Pg.283]    [Pg.64]    [Pg.19]    [Pg.118]    [Pg.265]    [Pg.282]    [Pg.315]    [Pg.328]    [Pg.339]    [Pg.257]    [Pg.336]    [Pg.128]    [Pg.191]    [Pg.145]    [Pg.418]    [Pg.255]    [Pg.212]    [Pg.439]    [Pg.377]    [Pg.6]    [Pg.158]    [Pg.47]    [Pg.430]    [Pg.743]    [Pg.20]    [Pg.244]    [Pg.241]    [Pg.266]    [Pg.214]    [Pg.2]    [Pg.35]    [Pg.369]    [Pg.466]    [Pg.382]    [Pg.397]    [Pg.451]    [Pg.336]    [Pg.338]    [Pg.546]   
See also in sourсe #XX -- [ Pg.443 ]




SEARCH



© 2024 chempedia.info