Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron conversion

In addition to the possible multipolarities discussed in the previous sections, internal-conversion electrons can be produced by an EO transition, in which no spin is carried off by the transition. Because the y-rays must carry off at least one unit of angular momentum, or spin, there are no y-rays associated with an EO transition, and the corresponding internal-conversion coefficients are infinite. The most common EO transitions are between levels with J = = where the other multipolarities caimot contribute. However, EO transitions can also occur mixed with other multipolarities whenever... [Pg.454]

The particle notation is j3 for electrons from j3 -decay, e for internal-conversion electrons, and IB for photons from internal bremsstrahlung. Ref 15. [Pg.457]

The exploration of the chemistry of azirines has led to the discovery of several pyrrole syntheses. From a mechanistic viewpoint the simplest is based upon their ability to behave as a-amino ketone equivalents in reactions analogous to the Knorr pyrrole synthesis cf. Section 3.03.3.2.2), as illustrated in Schemes 91a and 91b for reactions with carbanions. Parallel reactions with enamines or a-keto phosphorus ylides can be effected with electron-deficient 2//-azirines (Scheme 91c). Conversely, electron-rich azirines react with electron deficient alkynes (Scheme 91d). [Pg.139]

Conversion electron Mossbauer studies of compounds containing iron. F. J. Berry, Transition Met. Chem. (Weinheim, Ger.), 1979,4, 209-218 (60). [Pg.46]

Typical Mossbauer spectra for the fresh, reduced, carblded and used Fe/ZSM-5 system are shown in a composite Fig. 5. Similar spectra were obtained for the Fe-Co/ZSM-5 system. The product distribution for the F-T reaction, using the Fe and Fe-Co systems, are shown in Table 1. The gasoline range hydrocarbon yield increased from 75 to 94%, when the Fe-Co clusters were used in place of Fe only. In a typical CEMS (Conversion Electron Mossbauer Spectroscopy) of the Fe-Co system, no spectrum for 57pg vas observed even after one week from this. It was concluded that in the Fe-Co clusters Co was predominantly in the "mantle" and Fe species were In their "core," in the parlance of metallurgy/geophysics. This model Is sometimes referred to as the cherry model. [Pg.504]

Fig. 2.1 Nuclear resonance absorption of y-rays (Mossbauer effect) for nuclei with Z protons and N neutrons. The top left part shows the population of the excited state of the emitter by the radioactive decay of a mother isotope (Z, N ) via a- or P-emission, or K-capture (depending on the isotope). The right part shows the de-excitation of the absorber by re-emission of a y-photon or by radiationless emission of a conversion electron (thin arrows labeled y and e , respectively)... Fig. 2.1 Nuclear resonance absorption of y-rays (Mossbauer effect) for nuclei with Z protons and N neutrons. The top left part shows the population of the excited state of the emitter by the radioactive decay of a mother isotope (Z, N ) via a- or P-emission, or K-capture (depending on the isotope). The right part shows the de-excitation of the absorber by re-emission of a y-photon or by radiationless emission of a conversion electron (thin arrows labeled y and e , respectively)...
Resonant y-ray absorption is directly connected with nuclear resonance fluorescence. This is the re-emission of a (second) y-ray from the excited state of the absorber nucleus after resonance absorption. The transition back to the ground state occurs with the same mean lifetime t by the emission of a y-ray in an arbitrary direction, or by energy transfer from the nucleus to the K-shell via internal conversion and the ejection of conversion electrons (see footnote 1). Nuclear resonance fluorescence was the basis for the experiments that finally led to R. L. Mossbauer s discovery of nuclear y-resonance in ir ([1-3] in Chap. 1) and is the basis of Mossbauer experiments with synchrotron radiation which can be used instead of y-radiation from classical sources (see Chap. 9). [Pg.8]

Not all nuclear transitions of this kind produce a detectable y-ray for a certain portion, the energy is dissipated by internal conversion to an electron of the K-shell which is ejected as a so-called conversion electron. For some Mossbauer isotopes, the total internal conversion coefficient ax is rather high, as for the 14.4 keV transition of Fe (ax = 8.17). ax is defined as the ratio of the number of conversion electrons to the number of y-photons. [Pg.8]

So far, we have discussed only the detection of y-rays transmitted through the Mossbauer absorber. However, the Mossbauer effect can also be established by recording scattered radiation that is emitted by the absorber nuclei upon de-excitation after resonant y-absorption. The decay of the excited nuclear state proceeds for Fe predominantly by internal conversion and emission of a conversion electron from the K-shell ( 90%). This event is followed by the emission of an additional (mostly Ka) X-ray or an Auger electron when the vacancy in the K shell is filled again. Alternatively, the direct transition of the resonantly excited nucleus causes re-emission of a y-photon (14.4 keV). [Pg.39]

An interesting variant of a CEMS counter is the parallel-plate avalanche counter (PPAC) [18, 19], which carries the sample between parallel electrodes made of Perspex coated with graphite (Fig. 3.8, left). A counter gas is used to amplify the low conversion-electron current emitted by the sample, with an avalanche effect taking place between the plates. Compared with the CEMS proportional counters, PPAC gives a larger signal-to-background ratio, faster time response, simpler construction, and better performance at low temperatures. [Pg.40]

Fig. 7.67 Conversion electron Mossbauer spectra of the 73 keV y-rays in Ir recored at 4.2 K using a metal source, (a, b) metallic iridium, 5 mg cm, (c, d) iridium dioxide, 5 and 1 mg cm , respectively. Measuring time about 10 h for spectra a-c and 20 h for spectrum d (from [308])... Fig. 7.67 Conversion electron Mossbauer spectra of the 73 keV y-rays in Ir recored at 4.2 K using a metal source, (a, b) metallic iridium, 5 mg cm, (c, d) iridium dioxide, 5 and 1 mg cm , respectively. Measuring time about 10 h for spectra a-c and 20 h for spectrum d (from [308])...
Conversion electron Mossbauer spectroscopy (CEMS) measurements with back scattering geometry have the merit that spectra can be obtained from a sample with much less isotope content compared with transmission measurements. Another merit is that a sample, deposited on a thick substrate, could be measured, and that because of the limited escape depth of the conversion electrons, depth-selective surface studies are possible. The CEMS technique was found to be best applicable to specimens of 10-100 pg Au cm, i.e., about two orders of magnitudes thinner than required for measurements in transmission mode [443]. This way (1) very thin films of gold alloys, as well as laser- and in beam-modified surfaces in the submicrometers range of depth [443], and (2) metallic gold precipitates in implanted MgO crystals [444] were investigated. [Pg.365]

In rat liver slices, evidence also supports the roles of QMs in mediating the toxicity of a series of 4-methylphenols.24 The potency correlates with rates of QM formation in the order 2-bromo-4-methylphenol > 4-methylphenol = DMP > TMP > 2-methoxy-4-methylphenol. None of these compounds contain two bulky ortho substituents, so as discussed earlier the corresponding QMs are expected to be highly reactive. The authors suggested that differences in the reactivities of these QMs determine their relative toxic potencies as electron-donating substituents on the ring stabilize the QM and thereby reduce its toxicity (e.g., 2-methoxy-4-methylphenol is less toxic than DMP) and conversely, electron-withdrawing substituents destabilize QMs and enhance toxicity (e.g., 2-bromo-4-methylphenol is more potent than DMP). [Pg.335]

Internal Conversion—Process in which a gamma ray knocks an electron out of the same atom from which the gamma ray was emitted. The ratio of the number of internal conversion electrons to the number of gamma quanta emitted in the de-excitation of the nucleus is called the "conversion ratio."... [Pg.277]

Transition, Isomeric—The process by which a nuclide decays to an isomeric nuclide (i.e., one of the same mass number and atomic number) of lower quantum energy. Isomeric transitions (often abbreviated I.T.) proceed by gamma ray and/or internal conversion electron emission. [Pg.285]

Fig. 4 Coupling of the redox participants to the DNA w-stack is requisite to DNA-mediated charge transport. Rapid (>109 s 1) photoinduced electron transfer occurs between the metallointercalators, [Ru(phen)2dppz]2+ and [Rh(phi) 2phen]3+, when they are tethered to opposite ends of a DNA duplex over 40 A apart. Conversely, electron transfer does not occur between non-intercalated Ru(II) and Rh(III) complexes tethered to DNA... Fig. 4 Coupling of the redox participants to the DNA w-stack is requisite to DNA-mediated charge transport. Rapid (>109 s 1) photoinduced electron transfer occurs between the metallointercalators, [Ru(phen)2dppz]2+ and [Rh(phi) 2phen]3+, when they are tethered to opposite ends of a DNA duplex over 40 A apart. Conversely, electron transfer does not occur between non-intercalated Ru(II) and Rh(III) complexes tethered to DNA...
The range in tissues and linear energy transfer (LET) depend on the type of radiation emitted and its energy. The potent lethality of Auger and low-energy conversion electrons is demonstrated by intranuclear localization of the radioisotope due to their short ranges (about one cell nucleus in diameter). Alpha particles have ranges of several cell diameters (40-90 pm) and are effective in... [Pg.276]

Auger-L = L-shell Auger electron b ce-K = K-shell conversion electron yray c A = Equilibrium absorbed — dose constant... [Pg.5]

A voltage is applied to the electrode we say it is polarized. A current flows in response to the voltage, and electrons are consumed by electrochemical reactions around the electrodes. Electrolysis occurs. Each electron that flows through the electrode must be involved in a redox reaction, either oxidation or reduction. The electrons entering or leaving the electrode move as a result of reactions occurring in the immediate vicinity of the electrode. Conversely, electrons can travel in the opposite direction (leaving the electrode) to facilitate reduction reactions. [Pg.283]

Internal-conversion electrons, 21 309 Internal-conversion process, 21 300, 306-309... [Pg.482]


See other pages where Electron conversion is mentioned: [Pg.506]    [Pg.37]    [Pg.328]    [Pg.365]    [Pg.34]    [Pg.39]    [Pg.39]    [Pg.40]    [Pg.40]    [Pg.61]    [Pg.63]    [Pg.80]    [Pg.160]    [Pg.310]    [Pg.334]    [Pg.416]    [Pg.450]    [Pg.752]    [Pg.885]    [Pg.888]    [Pg.667]    [Pg.165]    [Pg.95]    [Pg.454]    [Pg.906]    [Pg.266]   
See also in sourсe #XX -- [ Pg.8 , Pg.39 , Pg.61 , Pg.450 ]

See also in sourсe #XX -- [ Pg.62 , Pg.156 ]

See also in sourсe #XX -- [ Pg.38 ]

See also in sourсe #XX -- [ Pg.742 ]

See also in sourсe #XX -- [ Pg.142 ]

See also in sourсe #XX -- [ Pg.75 , Pg.76 , Pg.77 , Pg.78 , Pg.79 , Pg.80 , Pg.81 , Pg.82 , Pg.83 ]




SEARCH



19 valence electron rule conversion

Conversion Electron Mossbauer

Conversion electron Mdssbauer

Conversion electron Mdssbauer spectroscopy

Conversion electron Mossbauer characteristics

Conversion electron Mossbauer spectroscopy

Conversion electron Mossbauer spectroscopy CEMS)

Conversion electron sources

Conversion electrons emission

Conversion-electron detector

Depth-selective conversion electron

Electron conversion coefficient

Electron conversion efficiency

Electron-deficient palladium conversion

Electronic conductivity Direct conversion

Electronic excitation internal conversion

Hydrated electron conversion

Hydrogen, energy conversion 4-electron reduction process

Integral conversion electron Mossbauer

Internal conversion electrons

Internal conversion multiple electronic states

Internal conversion, of electronically excited

Internal photon-to-electron-conversion

Internal photon-to-electron-conversion efficiency , molecular glasses

Quasi In Situ Conversion Electron Mossbauer Spectroscopy

Radioactive decay conversion electron

Sputtering, Electron Bombardment, Oxide-Chloride Conversion

© 2024 chempedia.info