Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent convention

The main uses of petroleum naphtha fall into the general areas of solvents (diluents) for paints, etc, dry-cleaning solvents, solvents for cutback asphalt, solvents in mbber industry, and solvents for industrial extraction processes. Turpentine, the older, more conventional solvent for paints, has been almost completely replaced by the cheaper and more abundant petroleum naphtha. [Pg.210]

Neoprene AH (1975). It is a methylacrylate-modified elastomer which is non-crystallizing and is chemically peptizable in aliphatic solvents. However, it is generally prepared as a dispersion in hexane, and has balanced properties between conventional solvent-borne adhesives and aqueous systems. [Pg.593]

Ambient-temperature ionic liquids have received much attention in both academia and industry, due to their potential as replacements for volatile organic compounds (VOCs) [1-3]. These studies have utilized the ionic liquids as direct replacements for conventional solvents and as a method to immobilize transition metal catalysts in biphasic processes. [Pg.319]

The effects of increasing the concentration of initiator (i.e., increased conversion, decreased M , and broader PDi) and of reducing the reaction temperature (i.e., decreased conversion, increased M , and narrower PDi) for the polymerizations in ambient-temperature ionic liquids are the same as observed in conventional solvents. May et al. have reported similar results and in addition used NMR to investigate the stereochemistry of the PMMA produced in [BMIM][PFgj. They found that the stereochemistry was almost identical to that for PMMA produced by free radical polymerization in conventional solvents [43]. The homopolymerization and copolymerization of several other monomers were also reported. Similarly to the findings of Noda and Watanabe, the polymer was in many cases not soluble in the ionic liquid and thus phase-separated [43, 44]. [Pg.326]

A related study used the air- and moisture-stable ionic liquids [RMIM][PFg] (R = butyl-decyl) as solvents for the oligomerization of ethylene to higher a-olefins [49]. The reaction used the cationic nickel complex 2 (Figure 7.4-1) under biphasic conditions to give oligomers of up to nine repeat units, with better selectivity and reactivity than obtained in conventional solvents. Recycling of the catalyst/ionic liquid solution was possible with little change in selectivity, and only a small drop in activity was observed. [Pg.328]

There is also some evidence that the ionic liquid medium affects polymer structure. Biedron and Kubisa150 reported that the tacticity of PMA prepared in the chiral ionic liquid 19 is different from that prepared in conventional solvent. It is also reported that reactivity ratios for MMA-S copolymcrization in the ionic liquid IS161 differ from those observed for bulk copolymerization. [Pg.433]

The Diels Alder reactions of maleic anhydride with 1,3-cyclohexadiene, as well the parallel reaction network in which maleic anhydride competes to react simultaneously with isoprene and 1,3-cyclohexadiene [84], were also investigated in subcritical propane under the above reaction conditions (80 °C and 90-152 bar). The reaction selectivities of the parallel Diels-Alder reaction network diverged from those of the independent reactions as the reaction pressure decreased. In contrast, the same selectivities were obtained in both parallel and independent reactions carried out in conventional solvents (hexane, ethyl acetate, chloroform) [84]. [Pg.287]

A recent report [90] investigated the Diels-Alder reaction of cyclopentadiene with various acrylates in SC-CO2 catalyzed by Sc(OTf)j. The results relative to n-butyl acrylate, in SC-CO2 and in conventional solvents, are reported in Scheme 6.34. The catalyzed reaction carried out under supercritical conditions went to completion within 15 h at 50 °C, whereas the uncatalyzed reaction proceeded only to 10 % after 24 h. An increase of endo/exo diastereoselectivity was also observed. [Pg.288]

Ionic liquids, which can be defined as salts that do not crystallize at room temperature [46], have been intensively investigated as environmentally friendly solvents because they have no vapor pressure and, in principle, can be reused more efficiently than conventional solvents. Ionic liquids have found wide application in organometallic catalysis as they facilitate the separation between the charged catalysts and the products. [Pg.14]

In conventional solvent extraction, a solute is partitioned between two immiscible solvents. Here, used as an... [Pg.170]

Very recently, we have developed one-pot synthesis of FePt nanoparticles larger than 5 nm with controlled composition by the polyol reduction of Pt(acac)2 and Fe(acac)3 in excess ligands without using the conventional solvents [23]. Figure 8 presents the TEM images... [Pg.364]

Room temperature ionic liquids (RTILs), such as those based on A,A-dialkylimidazolium ions, are gaining importance (Bradley, 1999). The ionic liquids do not evaporate easily and thus there are no noxious fumes. They are also non-inflammable. Ionic liquids dissolve catalysts that are insoluble in conventional organic chemicals. IFP France has developed these solvents for dimerization, hydrogenation, isomerization, and hydroformylation reactions without conventional solvents. For butene dimerization a commercial process exists. RTILs form biphasic systems with the catalyst in the RTIL phase, which is immiscible with the reactants and products. This system is capable of being extended to a list of organometallic catalysts. Industrial Friedel-Crafts reactions, such as acylations, have been conducted and a fragrance molecule tra.seolide has been produced in 99% yield (Bradley, 1999). [Pg.148]

Scott Oakes et al. (1999a, b) have shown how adoption of SC conditions can lead to a dramatic pressure-dependent enhancement of diastereoselectivity. In the case of sulphoxidation of cysteine derivatives with rert-butyl hydroperoxide, with cationic ion-exchange resin Amberlyst-15 as a catalyst, 95% de was realized at 40 °C and with SC CO2. By contrast, with conventional solvents no distereoselectivity was observed. Another example is the Diels-Alder reaction of acrylates with cyclopentadiene in SC CO2 at 50 °C, with scandium tris (trifluoromethanesulphonate) as a Lewis acid catalyst. The endoiexo ratio of the product was as high as 24 1, while in a solvent like toluene it was only 10 1. [Pg.173]

Scott Oakes et al. (1999a) have reported a dramatic pressure-dependent enhancement of diastereoselectivity for sulphoxidation of cysteine and methionine derivatives by using SC CO2 rather than conventional solvents. In the case of a derivative of cysteine, toluene/ methylene chloride gave a 50-50 mixture of stereoisomeric forms. With SC CO2 and tert-butyl hydroperoxide, however, 95% selectivity for just one stereoisomer was realized. [Pg.174]

Several extraction techniques have also been described that use enzymatic or chemical reactions to improve extraction efficiency. A technique that has been used to increase the overall recovery of the marker residue is enzymatic hydrolysis to convert specific phase II metabolites (glucuronides or sulfates) back into the parent residue. Cooper etal used a glucuronidase to increase 10-fold the concentration of chloramphenicol residues in incurred tissue. As an example of a chemical reaction, Moghaddam et al. used Raney nickel to reduce thioether bonds between benomyl and polar cellular components, and as a result achieved a substantially improved recovery over conventional solvent extraction. In choosing to use either of these approaches, thorough characterization of the metabolism in the tissue sample must be available. [Pg.306]

Our approach is to use the inexpensive ligands that are already used industrially as well as conventional solvents. The goal of this project is to develop a thermomorphic approach to the rhodium-catalyzed hydroformylation of higher olefins (>Ce) that enhances conversion rates and ease of product recovery while minimizing catalyst degradation and loss. [Pg.245]


See other pages where Solvent convention is mentioned: [Pg.47]    [Pg.361]    [Pg.372]    [Pg.428]    [Pg.201]    [Pg.547]    [Pg.497]    [Pg.498]    [Pg.402]    [Pg.353]    [Pg.427]    [Pg.302]    [Pg.340]    [Pg.359]    [Pg.260]    [Pg.82]    [Pg.89]    [Pg.285]    [Pg.331]    [Pg.333]    [Pg.482]    [Pg.518]    [Pg.115]    [Pg.49]    [Pg.141]    [Pg.365]    [Pg.693]    [Pg.729]    [Pg.730]    [Pg.730]    [Pg.46]    [Pg.60]    [Pg.60]    [Pg.83]    [Pg.90]   
See also in sourсe #XX -- [ Pg.283 , Pg.284 ]




SEARCH



Conventional solvent-recovery plant

Greener conventional solvents

Key Points in Typical Conventional Solvent Lube Plants

Liquid solvent conventional

Organocatalytic Baylis-Hillman Reaction in Non-conventional Solvents

Paint, conventional solvent

Palladium-catalysed Cross Coupling Reactions in Non-conventional Solvents

Plants Conventional Solvent Lube

Replacing conventional solvents

Solvents conventional

Use of Conventional Solvents

© 2024 chempedia.info