Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrolysis controlled potential difference

Evolution ofC02 by Controlled Potential Difference Electrolysis at the W/NB Interface. The evolution of CO2 was also observed when controlled potential difference... [Pg.135]

Figure 11.3.1 Current-potential curves at different times during a controlled-potential bulk electrolysis at =... Figure 11.3.1 Current-potential curves at different times during a controlled-potential bulk electrolysis at =...
Controlled potential electrolysis was carried out for 4 h by applying a definite potential difference, iiappb at the stationary interface between W containing 10 M NADH and 0.01 M borate buffer and DCE containing 10 M CQ, and the concentration of NADH in W after the electrolysis was determined spectrophotometrically. Ratios of concentrations of NADH reacted (and hence decreased) by the electrolysis are plotted as curve 1 in Fig. 6 as the function of itappi-... [Pg.502]

The electrode processes on the voltammetric and the preparative electrolysis time scales may be quite different. The oxidation of enaminone 1 with the hydroxy group in the ortho position under the controlled potential electrolysis gave bichromone 2 in 68% yield (Scheme 4.) with the consumption of 2.4 F/mol [21], The RDE voltammogram of the solution of 1 in CH3CN-O.I mol/1 Et4C104 showed one wave whose current function, ii/co C, was constant with rotation rates in the range from 1(X) to 2700 rpm and showed one-electron behavior by comparison to the values of the current function with that obtained for ferrocene. The LSV analysis was undertaken in order to explain the mechanism of the reaction which involves several steps (e-c-dimerization-p-deamina-tion). The variation of Ep/2 with log v was 30.1 1.8 mV and variation of Ep/2 with logC was zero. Thus, our kinetic data obtained from LSV compare favorably with the theoretical value, 29.6 mV at 298 K, for a first order rate low [15]. This observation ruled out the dimerization of radical cation, for... [Pg.94]

The difference between the two reactions of Scheme 2.9 may also be considered in terms of the complete electron transfer in both cases. If the a-nitrostilbene anion-radical and metallocomplex cation-radical are formed as short-lived intermediates, then the dimerization of the former becomes doubtful. The dimerization under electrochemical conditions may be a result of increased concentration of reactive anion-radicals near the electrode. This concentration is simply much higher in the electrochemical reaction because all of the stuff is being formed at the electrode, and therefore, there is more dimerization. Such a difference between electrode and chemical reactions should be kept in mind. In special experiments, only 2% of the anion-radical of a-nitrostilbene were prepared after interruption of controlled-potential electrolysis at a platinum gauze electrode. The kept potential was just past the cathodic peak. The electrolysis was performed in the well-stirred solution of trani -a-nitrostilbene in AN. Both processes developed in this case, namely, trans-to-cis conversion and dimerization (Kraiya et al. 2004). The partial electrolysis of a-nitrostilbene resulted in redox-catalyzed equilibration of the neutral isomers. [Pg.98]

The use of controlled potential electrolysis of fullerenes has thus far been used as a synthetic tool in two general ways. One method has involved the preparation of fullerene derivatives from the reaction of electrochemically generated anions of the pristine cages with electrophiles. The second method has involved an electrochemically induced retro-synthetic reaction of fullerene derivatives, which results in a number of different products, some of which have not been achieved by chemical synthesis. Both methods are described in the following, but special... [Pg.189]

The electrochemical and chemical behavior of rotaxane 7 + was analyzed by CV and controlled potential electrolysis experiments.34,35 From the CV measurements at different scan rates (from 0.005 to 2 V/s) both on the copper(I) and on the copper(II) species, it could be inferred that the chemical steps (motions of the ring from the phenanthroline to the terpyridine and vice versa) are slow on the timescale of the experiments. As the two redox couples involved in these systems are separated by 0.7 V, the concentrations of the species in each environment (tetra- or pentacoor-dination) are directly deduced from the peak intensities of the redox signals. In Fig. 14.13 are displayed some voltammograms (curves a-e) obtained on different oxidation states of the rotaxane 7 and at different times. [Pg.438]

The electrochemistry of heteropolymolybdates parallels that of the tungstates but with the following differences the reduction potentials are more positive and the primed species (metal-metal bonded ) are much less stable. Scheme 7 applies for or-fSiMo O ]4-. Species in parentheses are detectable only by rapid scan cyclic voltammetry, and XVIII decomposes rapidly at 0°C. The reduced anions such as II and IV are easily obtained by controlled potential electrolysis or by careful chemical reduction, e.g. with ascorbate. The use of metal ion reductants generally leads to other reactions, (equation 7). The reduced anions slowly isomerize (equation 8). The isomerization can be followed polarographically (all S potentials are more positive) or by NMR spectroscopy. By this means / isomers of most Keggin and Dawson molybdates have been prepared. [Pg.1051]

Electrochemical oxidation of formazans is a particularly advantageous preparative route to tetrazolium salts, which can be performed by controlled-potential or constant-current electrolysis. Tetrazolium salts with widely differing anions can be prepared by merely using a supporting electrolyte carrying the desired anion. The two-electron oxidative cyclization of forma-zan to tetrazolium salt may occur through an ECPE(d) mechanism. [Pg.281]

In general, controlled-current electrolyses need less expensive equipment. Only a controlled-current source in combination with a coulomb integrator is necessary. Therefore, in industry, electroorganic reactions are always performed at a fixed current density. In the laboratory, it is advisable to start with controlled-potential electrolyses using a potentiostat and a three-electrode electrolysis cell (Fig. 22.8). In this way, the reaction can be controlled at the redox potential of the substrate determined analytically, and the selectivity of the process can be studied at different potentials. After determination of the selectivity controlling factors, it is usually possible to change over to current control by proper selection of the current density and the concentration of the substrate. Using a continuous process, the concentration can be fixed at the desired value. Thus, selectivity can also be obtained under these conditions. [Pg.676]

Another approach in the study of the mechanism and synthetic applications of bromination of alkenes and alkynes involves the use of crystalline bromine-amine complexes such as pyridine hydrobromide perbromide (PyHBts), pyridine dibromide (PyBn), and tetrabutylammonium tribromide (BiMNBn) which show stereochemical differences and improved selectivities for addition to alkenes and alkynes compared to Bn itself.81 The improved selectivity of bromination by PyHBn forms the basis for a synthetically useful procedure for selective monoprotection of the higher alkylated double bond in dienes by bromination (Scheme 42).80 The less-alkylated double bonds in dienes can be selectively monoprotected by tetrabromination followed by monodeprotection at the higher alkylated double bond by controlled-potential electrolysis (the reduction potential of vicinal dibromides is shifted to more anodic values with increasing alkylation Scheme 42).80 The question of which diastereotopic face in chiral allylic alcohols reacts with bromine has been probed by Midland and Halterman as part of a stereoselective synthesis of bromo epoxides (Scheme 43).82... [Pg.345]

Small amounts of the N-oxide of 8 accompanied the formation of o,o -dinitrodiphenylethane by the reaction of o-nitrotoluene with potassium rert-butoxide [73AC(P)329 75MI4]. Formation of 8 and its N-oxide also resulted from the controlled-potential electrolysis of o-nitrobenzyl thiocyanate, a reaction proceeding by dimerization of the initially formed onitrobenzyl radicals followed by simultaneous or subsequent reductive coupling of the nitro groups. In strongly acidic medium, the reaction took a different course (85CCC33). [Pg.4]

In the 1-electron reduction of A1 4-3-ketosteroids (164), various stereoisomers of pinacols are formed according to the pH. The protonized form of the ketosteroid, reduced in acidic solution, gives rise to a pinacol with hydroxyl groups in the a-position. In alkaline media, the unprotonized ketosteroid is reduced with the formation of the isomer with the hydroxyls in the p-position. The structure of the products prepared by controlled potential electrolysis, are supported by the rates of dehydration and periodic acid oxidations. For A4-3-ketosteroids, the difference in the composition of products obtained in acidic and alkaline media is less pronounced. [Pg.71]

For the organic chemist, product studies in the widest sense, ie., including stereochemical aspects, isotope effects, etc. fall most natural in the study of electro-organic reactions. However, there are also some simple electrochemical techniques which are extremely useful in the design of electrochemical syntheses and can be set up in any laboratory for a modest cost. These methods — which are the ones to be discussed here - include different kinds of voltammetry, controlled potential electrolysis, and coulometry, andigive information as to the nature of the electro-active species, the possible nature of intermediates involved and their reactions with reagents present, and the number of electrons involved in the process. [Pg.13]

Electrochemical reduction of phthaloyl dichloride (73) at a carbon or mercury cathode in acetonitrile containing TEAP led to a complex array of products. Six cathodic waves observed in the CV for the reduction of phthaloyl dichloride arise from the reductions of different electrolysis products, as well as from hydrolytically formed phthalic anhydride (74),. caused by the presence of residual water in the solvent/supporting electrolyte (equation 45). From controlled potential electrolyses of phthaloyl dichloride, a variety of products including 3-chlorophthalide (75), phthalide (76), biphthalyl (77) and dihydrobiph-thalide (78) can be obtained69,70. Reduction of glutaryl dichloride (79) at a mercury cathode in acetonitrile containing 0.1M TEAP results in the formation of 5-chlorovalerolactone (80) and valerolactone (81) as minor products, and a polymeric material (equation 46)68. [Pg.1022]


See other pages where Electrolysis controlled potential difference is mentioned: [Pg.415]    [Pg.105]    [Pg.311]    [Pg.563]    [Pg.93]    [Pg.69]    [Pg.498]    [Pg.235]    [Pg.22]    [Pg.180]    [Pg.84]    [Pg.117]    [Pg.125]    [Pg.118]    [Pg.164]    [Pg.288]    [Pg.244]    [Pg.438]    [Pg.367]    [Pg.353]    [Pg.44]    [Pg.731]    [Pg.973]    [Pg.147]   


SEARCH



Control differences

Controlled potential

Controlled potential difference electrolysis interface

Controlled-potential electrolysi

Difference potential

Electrolysis potential

Potential control

© 2024 chempedia.info