Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Continuous flow reactor reaction

The most active formulation (ZSNbPt) was tested in a conventional reactor using as feedstream a mixture of light n-alkanes [n-pentane (20 wt%), n-hexane (60 wt.%) and n-heptane (20 wt%)] to simulate an industrial stream. Experiments were carried out in a conventional reaction system using a fixed-bed continuous -flow reactor. Reaction was carried out under the same conditions as the poisoning resistance experiments. The activity and selectivity of this catalyst (Fig. 5.13) have been compared with those obtained with sulfated zirconia impregnated with platinum (ZS). Fig. 5.13 represents the evolution of the conversion with reaction temperature. Clearly, the reactivity of the n-paraffm follows the order n-heptane > n-hexane > n-pentane for both catalysts, as expected when taking into account the adsorption heats of the different hydrocarbons [34]. [Pg.146]

Reaction times can be as short as 10 minutes in a continuous flow reactor (1). In a typical batch cycle, the slurry is heated to the reaction temperature and held for up to 24 hours, although hold times can be less than an hour for many processes. After reaction is complete, the material is cooled, either by batch cooling or by pumping the product slurry through a double-pipe heat exchanger. Once the temperature is reduced below approximately 100°C, the slurry can be released through a pressure letdown system to ambient pressure. The product is then recovered by filtration (qv). A series of wash steps may be required to remove any salts that are formed as by-products. The clean filter cake is then dried in a tray or tunnel dryer or reslurried with water and spray dried. [Pg.498]

Batch reactors often are used to develop continuous processes because of their suitabiUty and convenient use in laboratory experimentation. Industrial practice generally favors processing continuously rather than in single batches, because overall investment and operating costs usually are less. Data obtained in batch reactors, except for very rapid reactions, can be well defined and used to predict performance of larger scale, continuous-flow reactors. Almost all batch reactors are well stirred thus, ideally, compositions are uniform throughout and residence times of all contained reactants are constant. [Pg.505]

Mixing of product and feed (backmixing) in laboratory continuous flow reactors can only be avoided at very high length-to-diameter (aspect) ratios. This was observed by Bodenstein and Wohlgast (1908). Besides noticing this, the authors also derived the mathematical expression for reaction rate for the case of complete mixing. [Pg.58]

The decolorization of crystal violet dye by reaction with sodium hydroxide is a convenient means for studying mixing effects in continuous-flow reactors. The reaction is... [Pg.251]

The reductive alkylation of DAP with acetone led to high conversions and selectivity to the dialkylated product over Al, Bl, and BS2 catalysts. The ASl catalyst, which typically has lower activity than the Al or Pt-based catalysts showed greater formation of heterocycles. These results indicate that a more active catalyst, a shorter reaction time, a higher operating temperature, or sterically hindered amines/ketones will help minimize the formation of the heterocycles. Similar high selectivities were obtained with DAP-MIBK reaction over BSl and BS2 catalysts with no heterocycles being formed. However, over Al, the undesired heterocyclic compound was over 15%. This indicates that the reaction between diamines and ketones has a significant potential to form heterocyclic compounds unless the interaction between these is kept to a minimum by the use of a continuous flow reactor as proposed by Speranza et al. (16) or by other methods. [Pg.165]

Continuous flow reactors are almost invariably preferred to batch reactors when the processing capacity required is large. Although the capital investment requirements will be higher, the operating costs per unit of product will be lower for continuous operation than for batch reaction. The advantages of continuous operation are that it ... [Pg.248]

Semibatch or semiflow processes are among the most difficult to analyze from the viewpoint of reactor design because one must deal with an open system under nonsteady-state conditions. Hence the differential equations governing energy and mass conservation are more complex than they would be for the same reaction carried out batchwise or in a continuous flow reactor operating at steady state. [Pg.252]

In cases where the orders of the reactions in question are the same with respect to a particular reactant, the product distribution is independent of the concentration level of that species. It is, of course, possible to have situations in which the selectivity is enhanced by a high concentration of one reactant and by a low concentration of a second reactant. The higher the concentration dependence, the more important it is to keep a particular species at a high or a low value. Figures 9.1 and 9.2, adapted from Levenspiel (1), indicate some possible modes of contacting in batch and continuous flow reactors for some common... [Pg.319]

Xylene isomerization reactions can be accomplished by contacting a hot gas stream with a solid catalyst. Under these conditions the isomerization reactions may be regarded as reversible and first-order. Unfortunately, the catalyst also catalyzes disproportionation reactions. These reactions may be regarded as essentially second-order and irreversible. If one desires to achieve an equilibrium mixture of isomers with minimal material losses due to disproportionation, what do you recommend concerning the mode in which one should operate a continuous flow reactor ... [Pg.343]

The ideal continuous stirred tank reactor is the easiest type of continuous flow reactor to analyze in design calculations because the temperature and composition of the reactor contents are homogeneous throughout the reactor volume. Consequently, material and energy balances can be written over the entire reactor and the outlet composition and temperature can be taken as representative of the reactor contents. In general the temperatures of the feed and effluent streams will not be equal, and it will be necessary to use both material and energy balances and the temperature-dependent form of the reaction rate expression to determine the conditions at which the reactor operates. [Pg.357]

Because the reaction is driven by protonation of the carbonyl functionality, reacting species were expected to be localized on the bed of the acid catalyst subjected to microwave irradiation. Hexane was used as a nonpolar solvent to minimize solvent absorption and superheating. Elimination of catalyst superheating in a continuous-flow reactor was most probably the reason why no significant differences were observed between the reaction rates under the action of microwave and conventional heating. [Pg.352]

The hydrolysis of sucrose catalyzed by the strongly acidic cation-exchange resin Amberlite 200C in RH form was chosen as a model reaction to compare the use of stirred tank and continuous-flow reactors [47-49], Scheme 10.6. [Pg.354]

No rate enhancement was observed when the reaction was performed under microwave irradiation at the same temperature as in conventional heating [47]. Similar reaction kinetics were found in both experiments, presumably because mass and heat effects were eliminated by intense stirring [47]. The model developed enabled accurate description of microwave heating in the continuous-flow reactor equipped with specific regulation of microwave power [47, 48]. Calculated conversions and yields of sucrose based on predicted temperature profiles agreed with experimental data. [Pg.354]

Esterification of acetic acid by isopentanol in the presence of Amberlyst-15 [38], Reaction conditions hexane solvent, continuous-flow reactor. [Pg.363]

The reactor has facilitated a diverse range of synthetic reactions at temperatures up to 200 °C and 1.4 Pa. The temperature measurements taken at the microwave zone exit indicate that the maximum temperature is attained, but they give insufficient information about thermal gradients within the coil. Accurate kinetic data for studied reactions are thus difficult to obtain. This problem has recently been avoided by using fiber optic thermometer. The advantage of continuous-flow reactor is the possibility to process large amounts of starting material in a small volume reactor (50 mL, flow rate 1 L hr1). A similar reactor, but of smaller volume (10 mL), has been described by Chen et al. [117]. [Pg.371]

Figure 6.31. Schematic diagram of continuous flow reactor for fluorous biphasic reactions under gas... Figure 6.31. Schematic diagram of continuous flow reactor for fluorous biphasic reactions under gas...
We require a means to follow the progress of reaction, most commonly with respect to changing composition at fixed values of other parameters, such as T and catalytic activity. The method may involve intermittent removal of a sample for analysis or continuous monitoring of an appropriate variable measuring the extent of reaction, without removal of a sample. The rate itself may or may not be measured directly, depending on the type of reactor used. This may be a nonflow reactor, or a continuous-flow reactor, or one combining both of these characteristics. [Pg.5]

Other methods involve the use of continuous-flow reactors, and in certain cases, the rate is measured directly rather than indirectly. One advantage of a flow method is that a steady-state can usually be established, and this is an advantage for relatively fast reactions, and for continuous monitoring of properties. A disadvantage is that it may require relatively large quantities of materials. Furthermore, the flow rate must be accurately measured, and the flow pattern properly characterized. [Pg.6]

For a continuous-flow reactor, such as a CSTR, the energy balance is an enthalpy (H) balance, if we neglect any differences in kinetic and potential energy of the flowing stream, and any shaft work between inlet and outlet. However, in comparison with a BR, the balance must include the input and output of H by the flowing stream, in addition to any heat transfer to or from the control volume, and generation or loss of enthalpy by reaction within the control volume. Then the energy (enthalpy) equation in words is... [Pg.338]

Our treatment of Chemical Reaction Engineering begins in Chapters 1 and 2 and continues in Chapters 11-24. After an introduction (Chapter 11) surveying the field, the next five Chapters (12-16) are devoted to performance and design characteristics of four ideal reactor models (batch, CSTR, plug-flow, and laminar-flow), and to the characteristics of various types of ideal flow involved in continuous-flow reactors. Chapter 17 deals with comparisons and combinations of ideal reactors. Chapter 18 deals with ideal reactors for complex (multireaction) systems. Chapters 19 and 20 treat nonideal flow and reactor considerations taking this into account. Chapters 21-24 provide an introduction to reactors for multiphase systems, including fixed-bed catalytic reactors, fluidized-bed reactors, and reactors for gas-solid and gas-liquid reactions. [Pg.682]

An immobilized-enzyme continuous-flow reactor incorporating a continuous direct electrochemical regeneration of NAD + has been proposed. To retain the low molecular weight cofactor NADH/NAD+ within the reaction system, special hollow fibers (Dow ultrafilter UFb/HFU-1) with a molecular weight cut-off of 200 has been used [32],... [Pg.97]

The research group of Van Leeuwen reported the use of carbosilane de-ndrimers appended with peripherial diphenylphosphino end groups (i.e. 25, Scheme 26) [37]. After in situ complexation with allylpalladium chloride, the resultant metallodendrimer 25 was used as catalyst in the allylic alkylation of sodium diethyl malonate with allyl trifluoroacetate in a continuous flow reactor. Unlike in the batch reaction, in which a very high activity of the dendrimer catalyst and quantitative conversion of the substrate was observed, a rapid decrease in space time yield of the product was noted inside the membrane reactor. The authors concluded that this can most probably be ascribed to catalyst decomposition. The product flow (i.e. outside the membrane reactor)... [Pg.509]


See other pages where Continuous flow reactor reaction is mentioned: [Pg.1103]    [Pg.498]    [Pg.252]    [Pg.284]    [Pg.466]    [Pg.311]    [Pg.394]    [Pg.395]    [Pg.159]    [Pg.486]    [Pg.592]    [Pg.603]    [Pg.355]    [Pg.33]    [Pg.31]    [Pg.251]    [Pg.254]    [Pg.258]    [Pg.30]    [Pg.87]    [Pg.352]    [Pg.371]    [Pg.76]    [Pg.4]    [Pg.385]    [Pg.339]    [Pg.123]   
See also in sourсe #XX -- [ Pg.143 ]




SEARCH



Continuous flow

Continuous flow reactor polymerization reactions

Continuous flow reactors series-parallel reactions

Continuous reactions

Continuous-flow reaction

Continuous-flow reactors

Reaction in an Integral Continuous Flow Fixed Bed Reactor

Reactors reaction

© 2024 chempedia.info