Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Constitutive equations Newtonian fluid

There are two general types of constitutive equations for fluids Newtonian and non-Newtonian. For Newtonian fluids, the relation between the stress tensor, t, and the rate of deformation tensor or the shear stress is linear. For non-Newtonian fluids the relation between the stress tensor and the rate of deformation tensor is nonlinear. The various Newtonian and non-Newtonian rheologies of fluids are shown in Figure 12.2. There are four types of behavior (1) Newtonian, (2) pseudo-plastic, (3) Bingham plastic, and (4) dilatent. The reasons for these different rheological behaviors will also be discussed in subsequent sections of this chapter. But first it is necessary to relate the stress tensor to the rate of deformation tensor. [Pg.545]

Our approach, based on an energetical description of turbulence and on a power law model for the constitutive equation of fluids, leads us to the formulation of a theory generalizing newtonian and laminar cases [9]. [Pg.417]

A frequently used example of Oldroyd-type constitutive equations is the Oldroyd-B model. The Oldroyd-B model can be thought of as a description of the constitutive behaviour of a fluid made by the dissolution of a (UCM) fluid in a Newtonian solvent . Here, the parameter A, called the retardation time is de.fined as A = A (r s/(ri + s), where 7]s is the viscosity of the solvent. Hence the extra stress tensor in the Oldroyd-B model is made up of Maxwell and solvent contributions. The Oldroyd-B constitutive equation is written as... [Pg.12]

Phan-Thien, N. and Tanner, R.T., 1977. A new constitutive equation derived from network theory, Non-Newtonian Fluid Mech. 2, 353-365. [Pg.16]

In generalized Newtonian fluids, before derivation of the final set of the working equations, the extra stress in the expanded equations should be replaced using the components of the rate of strain tensor (note that the viscosity should also be normalized as fj = rj/p). In contrast, in the modelling of viscoelastic fluids, stress components are found at a separate step through the solution of a constitutive equation. This allows the development of a robust Taylor Galerkin/ U-V-P scheme on the basis of the described procedure in which the stress components are all found at time level n. The final working equation of this scheme can be expressed as... [Pg.136]

For some materials the linear constitutive relation of Newtonian fluids is not accurate. Either stress depends on strain in a more complex way, or variables other than the instantaneous rate of strain must be taken into account. Such fluids are known collectively as non-Newtonian. Many different types of behavior have been observed, ranging from fluids for which the viscosity in the Navier-Stokes equation is a simple function of the shear rate to the so-called viscoelastic fluids, for which the constitutive equation is so different that the normal stresses can cause the fluid to flow in a manner opposite to that predicted for a Newtonian fluid. [Pg.89]

The apparent viscosity, defined as du/dj) drops with increased rate of strain. Dilatant fluids foUow a constitutive relation similar to that for pseudoplastics except that the viscosities increase with increased rate of strain, ie, n > 1 in equation 22. Dilatancy is observed in highly concentrated suspensions of very small particles such as titanium oxide in a sucrose solution. Bingham fluids display a linear stress—strain curve similar to Newtonian fluids, but have a nonzero intercept termed the yield stress (eq. 23) ... [Pg.96]

The constitutive equation or equation of state for our Newtonian fluid is... [Pg.63]

The last term in equation 4.28 is not a simple geometric characterisation of the flow passages, as it also depends on the rheology of the fluid (n). The constant b is a function of the shape of the particles constituting the bed, having a value of about 15 for particles of spherical, or near-spherical, shapes there are insufficient reliable data available to permit values of b to be quoted for other shapes. Substitution of n = 1 and of /x for k in equation 4.28 reduces it to equation 4.13, obtained earlier for Newtonian fluids. [Pg.204]

Often times concentrated polymeric solutions cannot be treated as Newtonian fluids, however, and this tends to offset the simplifications which result from the creeping flow approximation and the fact that the boundaries are well defined. The complex rheological behavior of polymeric solutions and melts requires that nonlinear constitutive equations, such as Eqs. (l)-(5), be used (White and Metzner, 1963) ... [Pg.64]

Boussinesq (B4) proposed that the lack of internal circulation in bubbles and drops is due to an interfacial monolayer which acts as a viscous membrane. A constitutive equation involving two parameters, surface shear viscosity and surface dilational viscosity, in addition to surface tension, was proposed for the interface. This model, commonly called the Newtonian surface fluid model (W2), has been extended by Scriven (S3). Boussinesq obtained an exact solution to the creeping flow equations, analogous to the Hadamard-Rybczinski result but with surface viscosity included. The resulting terminal velocity is... [Pg.36]

Using a Maxwell model as a constitutive equation for a viscoelastic fluid, one can show that the instantaneous shear stress at the wall is smaller in the viscoelastic fluid than in the corresponding Newtonian fluid. [Pg.108]

The behavior of a non-Newtonian viscoelastic fluid can be described by a constitutive equation which takes into account condition (1). Rheological behavior of the fluid is described by an equation derived from White-Metzner-Litvinov model and takes the following form 27,321 ... [Pg.47]

We are now left to deal with the constitutive equation. For a generalized Newtonian fluid, we can write... [Pg.235]

Symmetry for the velocity profile will set <7 = 0. With the generalized Newtonian fluid constitutive equation, we get that... [Pg.235]

In this case, p is an arbitrary constant, chosen as the zero shear rate viscosity. The expression for the non-Newtonian viscosity is a constitutive equation for a generalized Newtonian fluid, like the power law or Ostwald-de-Waele model [6]... [Pg.533]

To avoid the apparent complications with absolute rheologic measurement techniques, a number of investigators (4,5). have used relative measurement systems to make rheologic measurements. The major difference between the relative and absolute measurement techniques is that the fluid mechanics in the relative systems are complex. The constitutive equations needed to find the fundamental rheologic variables cannot be readily solved. Relative measurement systems require the use of Newtonian and non-Newtonian calibrations fluids with known properties to relate torque and rotational speed to the shear rate and shear stress (6). [Pg.348]

In an important class of materials, called Newtonian, this relationship is linear and one parameter—the viscosity—specifies the constitution of the material. Water, low-viscosity fluids, and gases are Newtonian fluids. However, most polymeric melts are non-Newtonian and require more complex constitutive equations to describe the relationship between the stress and the rate of strain. These are discussed in Chapter 3. [Pg.40]

In the previous section we discussed the nature and some properties of the stress tensor t and the rate of strain tensor y. They are related to each other via a constitutive equation, namely, a generally empirical relationship between the two entities, which depends on the nature and constitution of the fluid being deformed. Clearly, imposing a given stress field on a body of water, on the one hand, and a body of molasses, on the other hand, will yield different rates of strain. The simplest form that these equations assume, as pointed out earlier, is a linear relationship representing a very important class of fluids called Newtonian fluids. [Pg.43]

For a Newtonian fluid in a simple elongational flow, the constitutive equation becomes... [Pg.91]

For almost steady flows one can expand yl1 or y about t t and obtain second-order fluid constitution equations in the co-deforming frame. When steady shear flows are considered, the CEF equation is obtained, which, in turn, reduces to the GNF equation for T i = 2 = 0 and to a Newtonian equation if, additionally, the viscosity is constant. [Pg.104]


See other pages where Constitutive equations Newtonian fluid is mentioned: [Pg.8]    [Pg.9]    [Pg.9]    [Pg.16]    [Pg.79]    [Pg.112]    [Pg.150]    [Pg.150]    [Pg.156]    [Pg.88]    [Pg.89]    [Pg.630]    [Pg.631]    [Pg.122]    [Pg.128]    [Pg.128]    [Pg.187]    [Pg.406]    [Pg.131]    [Pg.131]    [Pg.251]    [Pg.177]    [Pg.4]    [Pg.5]    [Pg.197]    [Pg.225]    [Pg.103]    [Pg.108]   
See also in sourсe #XX -- [ Pg.37 , Pg.45 , Pg.48 ]

See also in sourсe #XX -- [ Pg.93 ]




SEARCH



Constitutive equations equation)

Newtonian constitutive equation

Newtonian equation

© 2024 chempedia.info