Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Constant wave function

Interatomic distance is calculated by mathematical modelling of the electron exchange that constitutes a covalent bond. Such a calculation was first performed by Heitler and London using Is atomic wave functions to simulate the bonding in H2. To model the more general case of homonuclear diatomic molecules the interacting atoms in their valence states are described by monopositive atomic cores and two valence electrons with constant wave functions (3.36). [Pg.177]

Problem 29-3. Using the method of Section 27e and the screening-constant wave function 2 of Table 29-1, evaluate the polarizability of the helium atom, taking as the zero point for energy the singly ionized atom. [Pg.229]

The situation with defect on the distance zo from the surface is represented schematically in Fig. 4.1 Id. All the calculations were carried out similarly to previous case, but they were more complicated as normalization constants, wave functions parameters and energy level positions appeared to be dependent on zo- The latter dependence seems to be very interesting since it can characterize the depth of surface influence on the energy and other physical properties. [Pg.207]

Given the formulas for the s and p atomic orbitals in Figure 5.1, plot contours of constant wave function intensity in the r - theta plane. [Pg.233]

In addition, it can occasionally be useful to regard some physical parameter appearing in the theoi y as a complex quantity and the wave function to possess analytic properties with regard to them. This formal procedure might even include fundamental constants like e, h, and so on. [Pg.110]

Thus, the electronic wave function of H(III) is (to within a multiplication constant) equal to the in-phase combination of the electronic wave functions of... [Pg.334]

It is clear from Figure 5 that the phase of the electronic wave function of the ground state is constant when moving along the Qp coordinate, until a certain... [Pg.338]

Figure 5. A cut across the ground state (GS) and the excited state (ES) potential surfaces of the H4 system. The parameter Qp is the phase preserving nuclear coordinate connecting the H(lll) with the transition state between H(I) and H(1I) (Fig, 4). Keeping the phase of the electronic wave function constant, this coordinate leads from the ground to the excited state. At a certain point, the two surfaces must touch. At the crossing point, the wave function is degenerate. Figure 5. A cut across the ground state (GS) and the excited state (ES) potential surfaces of the H4 system. The parameter Qp is the phase preserving nuclear coordinate connecting the H(lll) with the transition state between H(I) and H(1I) (Fig, 4). Keeping the phase of the electronic wave function constant, this coordinate leads from the ground to the excited state. At a certain point, the two surfaces must touch. At the crossing point, the wave function is degenerate.
Adopting the view that any theory of aromaticity is also a theory of pericyclic reactions [19], we are now in a position to discuss pericyclic reactions in terms of phase change. Two reaction types are distinguished those that preserve the phase of the total electi onic wave-function - these are phase preserving reactions (p-type), and those in which the phase is inverted - these are phase inverting reactions (i-type). The fomier have an aromatic transition state, and the latter an antiaromatic one. The results of [28] may be applied to these systems. In distinction with the cyclic polyenes, the two basis wave functions need not be equivalent. The wave function of the reactants R) and the products P), respectively, can be used. The electronic wave function of the transition state may be represented by a linear combination of the electronic wave functions of the reactant and the product. Of the two possible combinations, the in-phase one [Eq. (11)] is phase preserving (p-type), while the out-of-phase one [Eq. (12)], is i-type (phase inverting), compare Eqs. (6) and (7). Normalization constants are assumed in both equations ... [Pg.343]

If the solution of the zero-order Schiodinger equation [i.e., all teiins in (17) except V(r,Ro) are neglected] yields an/-fold degenerate electronic term, the degeneracy may be removed by the vibronic coupling tenns. If F) and T ) are the two degenerate wave functions, then the vibronic coupling constant... [Pg.356]

Since the form of the electronic wave functions depends also on the coordinate p (in the usual, parametric way), the matrix elements (21) are functions of it too. Thus it looks at first sight as if a lot of cumbersome computations of derivatives of the electronic wave functions have to be carried out. In this case, however, nature was merciful the matrix elements in (21) enter the Hamiltonian matrix weighted with the rotational constant A, which tends to infinity when the molecule reaches linear geometry. This means that only the form of the wave functions, that is, of the matrix elements in (21), in the p 0 limit are really needed. In the above mentioned one-elecbon approximation... [Pg.486]

To avoid having the wave function zero everywhere (an unacceptable solution ), the spin orbitals must be fundamentally difl erent from one another. For example, they cannot be related by a constant factor. You can write each spin orbital as a product of a space function W hich depen ds on ly on the x, y, and z. coordin ates of th e electron—and a spin fun ction. The space function is usually called themolecnlarorbitah While an in finite number of space functions are possible, only two spin funclions are possible alpha and beta. [Pg.36]

Set this threshold Lo a small positive constant (the default value is 10 Hartrcc), Tli is tli resh old is used by HyperCh cm to igu ore all two-cicetron repulsion in tegrals with an absolute value less th an th is value. Tli is option controls the performance of the SCF itera-lious and the accuracy of the wave function and energies since it can decrease the number of ealeulatcd Iwo-elcclrou integrals. [Pg.113]

Normalization is the process of finding a multiplicative constant for the wave function such that the integral of / over all space is 1.0. All space in this calculation is nonnegative because r cannot be less than 0. [Pg.22]

Neither of these equations tells us which spin is on which electron. They merely say that there are two spins and the probability that the 1, 2 spin combination is ot, p is equal to the probability that the 2, 1 spin combination is ot, p. The two linear combinations i i(l,2) v /(2,1) are perfectly legitimate wave functions (sums and differences of solutions of linear differential equations with constant coefficients are also solutions), but neither implies that we know which electron has the label ot or p. [Pg.268]

The C-H spin couplings (Jen) have been dealt with in numerous studies, either by determinations on samples with natural abundance (122, 168, 224, 231, 257, 262, 263) or on samples specifically enriched in the 2-, 4-, or 5-positions (113) (Table 1-39). This last work confirmed some earlier measurements and permitted the determination for the first time of JcH 3nd coupling constants. The coupling, between a proton and the carbon atom to which it is bonded, can be calculated (264) with summation rule of Malinovsky (265,266), which does not distinguish between the 4- and 5-positions, and by use of CNDO/2 molecular wave functions the numerical values thus - obtained are much too low, but their order agrees with experiment. The same is true for Jch nd couplings. [Pg.79]

In Figure 1.8 the real wave functions for the f, 2p and 3d orbitals are plotted in the form of polar diagrams, the construction of which may be illustrated by the simple case of the 2p orbital. The wave function in Equation (f.43) is independent of 4> and is simply proportional to cos 6. The polar diagram consists of points on a surface obtained by marking off, on lines drawn outwards from the nucleus in all directions, distances proportional to I cos 6 at a constant value of R2i(r). The resulting surface consists of two touching spheres. [Pg.16]

For fixed nuclei = 0, and F is constant, and there is a set of electronic wave functions J/g which satisfy the Schrddinger equation... [Pg.19]

The quantity J dr is called the vibrational overlap integral, as it is a measure of the degree to which the two vibrational wave functions overlap. Its square is known as the Franck-Condon factor to which the intensity of the vibronic transition is proportional. In carrying out the integration the requirement that r remain constant during the transition is necessarily taken into account. [Pg.248]

In almost all cases X is unaffected by any changes in the physical and chemical conditions of the radionucHde. However, there are special conditions that can influence X. An example is the decay of Be that occurs by the capture of an atomic electron by the nucleus. Chemical compounds are formed by interactions between the outer electrons of the atoms in the compound, and different compounds have different electron wave functions for these outer electrons. Because Be has only four electrons, the wave functions of the electrons involved in the electron-capture process are influenced by the chemical bonding. The change in the Be decay constant for different compounds has been measured, and the maximum observed change is about 0.2%. [Pg.446]

Electrons are very light particles and cannot be described by classical mechanics. They display both wave and particle characteristics, and must be described in terms of a wave function, T. Tlie quantum mechanical equation corresponding to Newtons second law is the time-dependent Schrbdinger equation (h is Plancks constant divided by 27r). [Pg.2]

The parameterization of MNDO/AM1/PM3 is performed by adjusting the constants involved in the different methods so that the results of HF calculations fit experimental data as closely as possible. This is in a sense wrong. We know that the HF method cannot give the correct result, even in the limit of an infinite basis set and without approximations. The HF results lack electron correlation, as will be discussed in Chapter 4, but the experimental data of course include such effects. This may be viewed as an advantage, the electron correlation effects are implicitly taken into account in the parameterization, and we need not perform complicated calculations to improve deficiencies in fhe HF procedure. However, it becomes problematic when the HF wave function cannot describe the system even qualitatively correctly, as for example with biradicals and excited states. Additional flexibility can be introduced in the trial wave function by adding more Slater determinants, for example by means of a Cl procedure (see Chapter 4 for details). But electron cori elation is then taken into account twice, once in the parameterization at the HF level, and once explicitly by the Cl calculation. [Pg.95]

The optimum value of c is determined by the variational principle. If c = 1, the UHF wave function is identical to RHF. This will normally be the case near the equilibrium distance. As the bond is stretched, the UHF wave function allows each of the electrons to localize on a nucleus c goes towards 0. The point where the RHF and UHF descriptions start to differ is often referred to as the RHF/UHF instability point. This is an example of symmetry breaking, as discussed in Section 3.8.3. The UHF wave function correctly dissociates into two hydrogen atoms, however, the symmetry breaking of the MOs has two other, closely connected, consequences introduction of electron correlation and spin contamination. To illustrate these concepts, we need to look at the 4 o UHF determinant, and the six RHF determinants in eqs. (4.15) and (4.16) in more detail. We will again ignore all normalization constants. [Pg.112]

In other words, the exact wave function behaves asymptotically as a constant 4- l/2ri2 when ri2 is small. It would therefore seem natural that the interelectronic distance would be a necessary variable for describing electron correlation. For two-electron systems, extremely accurate wave functions may be generated by taking a trial wave function consisting of an orbital product times an expansion in electron coordinates such as... [Pg.140]

The acronym SEC refers to the case where the reference wave function is of the MCSCF type and tire correlation energy is calculated by an MR-CISD procedure. When the reference is a single determinant (HE) the SAC nomenclature is used. In the latter case the correlation energy may be calculated for example by MP2, MP4 or CCSD, producing acronyms like MP2-SAC, MP4-SAC and CCSD-SAC. In the SEC/SAC procedure the scale factor F is assumed constant over the whole surface. If more than one dissociation channel is important, a suitable average F may be used. [Pg.169]


See other pages where Constant wave function is mentioned: [Pg.39]    [Pg.223]    [Pg.310]    [Pg.442]    [Pg.560]    [Pg.39]    [Pg.223]    [Pg.310]    [Pg.442]    [Pg.560]    [Pg.132]    [Pg.133]    [Pg.338]    [Pg.401]    [Pg.608]    [Pg.398]    [Pg.243]    [Pg.49]    [Pg.83]    [Pg.194]    [Pg.360]    [Pg.130]    [Pg.220]    [Pg.161]    [Pg.445]    [Pg.286]    [Pg.24]    [Pg.115]    [Pg.157]   
See also in sourсe #XX -- [ Pg.177 , Pg.244 ]




SEARCH



Force constants from electronic wave functions

© 2024 chempedia.info