Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Constant Temperature Model

The temperature of the cooling medium in the condenser or the temperature of the heating medium in the reboiler are set, and then Aspen calculates the required UA product (overall heat-transfer coefficient U and heat-transfer area A) from the known heat-transfer rate and temperature differential driving force. This temperature is manipulated in the dynamic simulations. No heat-exchanger dynamics are considered. [Pg.388]


One of the simplest cases of phase behavior modeling is that of soHd—fluid equilibria for crystalline soHds, in which the solubility of the fluid in the sohd phase is negligible. Thermodynamic models are based on the principle that the fugacities (escaping tendencies) of component are equal for all phases at equilibrium under constant temperature and pressure (51). The soHd-phase fugacity,, can be represented by the following expression at temperature T ... [Pg.224]

Correlations of heat and mass-transfer rates are fairly well developed and can be incorporated in models of a reaction process, but the chemical rate data must be determined individually. The most useful rate data are at constant temperature, under conditions where external mass transfer resistance has been avoided, and with small particles... [Pg.2070]

This model permits one to immediately relate the bath frequency spectrum to the rate-constant temperature dependence. For the classical bath (PhoOc < 1) the Franck-Condon factor is proportional to exp( —with the reorganization energy equal to... [Pg.10]

A fireball is assumed to bum with a constant temperature in the isothermal fireball model of Lihou and Maund (1982). Combustion is controlled by the supply of air and ceases after a time which is correlated empirically with the mass of flammable gas in the initial vapor sphere. It is assumed that a fraction (1 — /c) of the fuel is used to form soot, and the remaining fractionbums stoichiometrically, producing an increase of /ij moles per mole of flammable gas. The stoichiometric molar ratio of air to flammable gas is p, and dVIdt is the volumetric rate of air entrainment. The rate of increase of volume can now be written as ... [Pg.172]

In the original equation of van Laar, the effective molar volume was assumed to be independent of composition this assumption implies zero volume-change of mixing at constant temperature and pressure. While this assumption is a good one for solutions of ordinary liquids at low pressures, it is poor for high-pressure solutions of gases in liquids which expand (dilate) sharply as the critical composition is approached. The dilated van Laar model therefore assumes that... [Pg.176]

If we work at different temperatures, keeping u and tjc constant, the model predicts... [Pg.413]

How does the frequency of collisions of the molecules of a gas with the walls of the container change as the volume of the gas is decreased at constant temperature Justify your answer on the basis of the kinetic model of gases. [Pg.295]

A variety of studies can be found in the literature for the solution of the convection heat transfer problem in micro-channels. Some of the analytical methods are very powerful, computationally very fast, and provide highly accurate results. Usually, their application is shown only for those channels and thermal boundary conditions for which solutions already exist, such as circular tube and parallel plates for constant heat flux or constant temperature thermal boundary conditions. The majority of experimental investigations are carried out under other thermal boundary conditions (e.g., experiments in rectangular and trapezoidal channels were conducted with heating only the bottom and/or the top of the channel). These experiments should be compared to solutions obtained for a given channel geometry at the same thermal boundary conditions. Results obtained in devices that are built up from a number of parallel micro-channels should account for heat flux and temperature distribution not only due to heat conduction in the streamwise direction but also conduction across the experimental set-up, and new computational models should be elaborated to compare the measurements with theory. [Pg.187]

Fig. 2. Temperature dependence of the HS fraction % according to the Ising model. The employed parameter values are = 150 K, Aj = Aj = 500 cm and X = — 100 em h Here, Aj and Aj are the orbital energy differences between the and levels and between the Bj and levels, respectively, X being the spin-orbit coupling constant. The model parameters A, Aj, and X determine the value of AG. The levels result from the HS iron(II) ground state in orthorhombic symmetry according to Bj -1- B2 + B. The figures on the curves specify the values of... Fig. 2. Temperature dependence of the HS fraction % according to the Ising model. The employed parameter values are = 150 K, Aj = Aj = 500 cm and X = — 100 em h Here, Aj and Aj are the orbital energy differences between the and levels and between the Bj and levels, respectively, X being the spin-orbit coupling constant. The model parameters A, Aj, and X determine the value of AG. The levels result from the HS iron(II) ground state in orthorhombic symmetry according to Bj -1- B2 + B. The figures on the curves specify the values of...
The model equations, I to V above, provide the basis for solution, for this case of constant temperature and pressure with a molar change owing to chemical reaction. This is illustrated by the information flow diagram. Fig. 4.10. The step-by-step calculation procedure is as follows ... [Pg.238]

Thermodynamics of the ITIES was developed by several authors [2-6] on the basis of the interfacial phase model of Gibbs or Guggenheim. General treatments were outlined by Kakiuchi and Senda [5] and by Girault and Schiffrin [6]. At a constant temperature T and pressure p the change in the surface tension y can be related to the relative surface excess concentrations Tf " of the species i with respect to both solvents [6],... [Pg.419]

An example of the experimental setup for the measuring of extracellular action and resting potentials is shown in Fig. 4. All electrochemical measurements can be conducted at constant temperature inside a Faraday cage mounted on a vibration-stabilized table in a laboratory (Fig. 4). Ag/AgCl electrodes were connected to a voltmeter/pFl meter [Cole Palmer Microcomputer pFl-vision Model 05669-20, Fig. 4(a)] with high input impedance or a programmable electrometer/amplifier [Keithley-2000/20, Keithley-6517, or Keithley-6514, Fig. 4(b)]. An IBM-compatible microcompu-... [Pg.657]

The number of binding sites can be determined in this model by a plot of d Ink /dlnm at constant temperature, pH, and ion valency. To do that, it may be assumed that dlny /dlnm is approximately zero. The actual value is -0.04 for 0.1 to 0.5 M sodium chloride and less at lower concentrations. To a first approximation, the stoichiometry of water molecules released by binding protein could be determined from the slope of the plot of dink /dlnm vs. m. However, especially at low salt concentration and near the isoelectric point, the slope of such plots is nonlinear. The nonlinearity may be due to hydrophobic interaction between stationary phase and protein or a large change of ionic hydration on binding.34... [Pg.218]

A rational development of models for moisture uptake begins with a description of the experimental procedure used to determine moisture uptake as a function of time. The first step in the experiment is to control the relative humidity to which a sample will be exposed. One technique to control humidity is to use saturated salt solutions. When placed in a closed system and held at a constant temperature, a saturated aqueous salt solution will provide a constant humidity (RH0) within that system. Table 1 lists relative humidities that will be maintained over various saturated salt solutions [14],... [Pg.699]

Astronomical Observatory, were used to carry out the calculations of theoretical equivalent widths of lines, synthetic spectra and a set of plane parallel, line-blanketed, flux constant LTE model atmospheres. The effective temperatures of the stars were determined from photometry, the infrared flux method and corrected, if needed, in order to achieve the LTE excitation balance in the iron abundance results. The gravities were found by forcing Fe I and Fe II to yield the same iron abundances. The microturbulent velocities were determined by forcing Fe I line abundances to be independent of the equivalent width. For more details on the method of analysis and atomic data see Tautvaisiene et al. (2001). [Pg.14]

In V-I DC measurements at constant temperature, non-linear effects appear even at powers as low as 10-14W they become more evident when temperature is lowered (see Section 9.6.3 and Fig. 9.8) [19]. Such non-linearities can be interpreted by the so-called hot-electron model (HEM). [Pg.327]

In most experiments the smallest amount of electrolyte needed to coagulate the sols measured after 2 hours standing was chosen as the CCC. When using HC1, this point is the critical coagulation pH. A constant temperature water bath was used for temperature different than 23°C. The pH values were measured with a Beckman Model 96A pH meter and a Fisher combination electrode. The electrophoretic mobility measurements were made with a Laser Doppler Electrophoresis apparatus. These experiments were performed by Mr. J. Klein of the Chemistry Department, Syracuse University. [Pg.379]

Reaction paths can be traced at steady or varying temperature the latter case is known as a polythermal path. Strictly speaking, heat transfer occurs even at constant temperature, albeit commonly in small amounts, to offset reaction enthalpies. For convenience, modelers generally define polythermal paths in terms of changes in temperature rather than heat fluxes. [Pg.12]


See other pages where Constant Temperature Model is mentioned: [Pg.388]    [Pg.316]    [Pg.388]    [Pg.316]    [Pg.77]    [Pg.161]    [Pg.469]    [Pg.77]    [Pg.161]    [Pg.49]    [Pg.267]    [Pg.1304]    [Pg.480]    [Pg.662]    [Pg.326]    [Pg.408]    [Pg.271]    [Pg.54]    [Pg.115]    [Pg.122]    [Pg.129]    [Pg.458]    [Pg.240]    [Pg.261]    [Pg.259]    [Pg.285]    [Pg.204]    [Pg.333]    [Pg.322]    [Pg.347]    [Pg.94]    [Pg.85]    [Pg.471]    [Pg.55]   


SEARCH



Constant temperature

Temperature model

Temperature modelling

© 2024 chempedia.info