Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coagulation critical

Fibers spun by this method may be isotropic or asymmetric, with dense or porous walls, depending on the dope composition. An isotropic porous membrane results from spinning solutions at the point of incipient gelation. The dope mixture comprises a polymer, a solvent, and a nonsolvent, which are spun into an evaporative column. Because of the rapid evaporation of the solvent component, the spinning dope solidifies almost immediately upon emergence from the spinneret in contact with the gas phase. The amount of time between the solution s exit from the spinneret and its entrance into the coagulation bath has been found to be a critical variable. Asymmetric fibers result from an inherently more compatible solvent/nonsolvent composition, ie, a composition containing lower nonsolvent concentrations. The nature of the exterior skin (dense or porous) of the fiber is also controlled by the dope composition. [Pg.149]

Beaded acrylamide resins (28) are generally produced by w/o inverse-suspension polymerization. This involves the dispersion of an aqueous solution of the monomer and an initiator (e.g., ammonium peroxodisulfates) with a droplet stabilizer such as carboxymethylcellulose or cellulose acetate butyrate in an immiscible liquid (the oil phase), such as 1,2-dichloroethane, toluene, or a liquid paraffin. A polymerization catalyst, usually tetramethylethylenediamine, may also be added to the monomer mixture. The polymerization of beaded acrylamide resin is carried out at relatively low temperatures (20-50°C), and the polymerization is complete within a relatively short period (1-5 hr). The polymerization of most acrylamides proceeds at a substantially faster rate than that of styrene in o/w suspension polymerization. The problem with droplet coagulation during the synthesis of beaded polyacrylamide by w/o suspension polymerization is usually less critical than that with a styrene-based resin. [Pg.9]

Regular coagulation blood tests are critical for safe monitoring of the drug (except the LMWHs). [Pg.428]

As an even more explicit example of this effect Figure 6 shows that EPM is able to reproduce fairly well the experimentally observed dependence of the particle number on surfactant concentration for a different monomer, namely methyl methacrylate (MMA). The polymerization was carried at 80°C at a fixed concentration of ammonium persulfate initiator (0.00635 mol dm 3). Because methyl methacrylate is much more water soluble than styrene, the drop off in particle number is not as steep around the critical micelle concentration (22.) In this instance the experimental data do show a leveling off of the particle number at high and low surfactant concentrations as expected from the theory of particle formation by coagulative nucleation of precursor particles formed by homogeneous nucleation, which has been incorporated into EPM. [Pg.375]

The principle of this method is that the initial slope (time = zero) of the optical density-time curve is proportional to the rate of flocculation. This initial slope increases with increasing electrolyte concentration until it reaches a limiting value. The stability ratio W is defined as reciprocal ratio of the limiting initial slope to the initial slope measured at lower electrolyte concentration. A log W-log electrolyte concentration plot shows a sharp inflection at the critical coagulation concentration (W = 1), which is a measure of the stability to added electrolyte. Reerink and Overbeek (12) have shown that the value of W is determined mainly by the height of the primary repulsion maximum in the potential energy-distance curve. [Pg.80]

Table VI Critical Coagulation/Flocculation Concentration and the slope of log W vs log C plot... Table VI Critical Coagulation/Flocculation Concentration and the slope of log W vs log C plot...
In a number of recent publications (1, 2) microcrystailine cellulose dispersions (MCC) have been used as models to study different aspects of the papermaking process, especially with regard to its stability. One of the central points in the well established DLVO theory of colloidal stability is the critical coagulation concentration (CCC). In practice, it represents the minimum salt concentration that causes rapid coagulation of a dispersion and is an intimate part of the theoretical framework of the DLVO theory (3). Kratohvil et al (A) have studied this aspect of the DLVO theory with MCC and given values for the CCC for many salts, cationic... [Pg.377]

In most experiments the smallest amount of electrolyte needed to coagulate the sols measured after 2 hours standing was chosen as the CCC. When using HC1, this point is the critical coagulation pH. A constant temperature water bath was used for temperature different than 23°C. The pH values were measured with a Beckman Model 96A pH meter and a Fisher combination electrode. The electrophoretic mobility measurements were made with a Laser Doppler Electrophoresis apparatus. These experiments were performed by Mr. J. Klein of the Chemistry Department, Syracuse University. [Pg.379]


See other pages where Coagulation critical is mentioned: [Pg.735]    [Pg.735]    [Pg.190]    [Pg.2682]    [Pg.242]    [Pg.281]    [Pg.282]    [Pg.350]    [Pg.27]    [Pg.71]    [Pg.253]    [Pg.492]    [Pg.462]    [Pg.171]    [Pg.177]    [Pg.23]    [Pg.406]    [Pg.257]    [Pg.309]    [Pg.312]    [Pg.502]    [Pg.586]    [Pg.137]    [Pg.61]    [Pg.77]    [Pg.80]    [Pg.41]    [Pg.442]    [Pg.656]    [Pg.1307]    [Pg.1519]    [Pg.106]    [Pg.224]    [Pg.447]    [Pg.36]    [Pg.306]    [Pg.34]    [Pg.59]    [Pg.60]    [Pg.90]    [Pg.91]   


SEARCH



© 2024 chempedia.info