Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Connecting chromatography

At first glance, the contents of Chap. 9 read like a catchall for unrelated topics. In it we examine the intrinsic viscosity of polymer solutions, the diffusion coefficient, the sedimentation coefficient, sedimentation equilibrium, and gel permeation chromatography. While all of these techniques can be related in one way or another to the molecular weight of the polymer, the more fundamental unifying principle which connects these topics is their common dependence on the spatial extension of the molecules. The radius of gyration is the parameter of interest in this context, and the intrinsic viscosity in particular can be interpreted to give a value for this important quantity. The experimental techniques discussed in Chap. 9 have been used extensively in the study of biopolymers. [Pg.496]

In practice, experimental peaks can be affected by extracolumn retention and dispersion factors associated with the injector, connections, and any detector. For hnear chromatography conditions, the apparent response parameters are related to their corresponding true column value by... [Pg.1532]

Selectivity of chromatographic separation is known to be varied by changing both the nonstationary phase composition and adsorbent nature. It is shown that the less are the values of the reached selectivity coefficient the higher are the requirements to column effectiveness. In this connection the choice of stationai y phase with high and predicted selectivity coefficient for the compounds being separated is still remains a topical problem of high-performance liquid chromatography. [Pg.138]

Connect the column to the high-performance liquid chromatography (HPLC) system in the reverse flow direction. [Pg.135]

Most size exclusion chromatography (SEC) practitioners select their columns primarily to cover the molar mass area of interest and to ensure compatibility with the mobile phase(s) applied. A further parameter to judge is the column efficiency expressed, e.g., by the theoretical plate count or related values, which are measured by appropriate low molar mass probes. It follows the apparent linearity of the calibration dependence and the attainable selectivity of separation the latter parameter is in turn connected with the width of the molar mass range covered by the column and depends on both the pore size distribution and the pore volume of the packing material. Other important column parameters are the column production repeatability, availability, and price. Unfortunately, the interactive properties of SEC columns are often overlooked. [Pg.445]

J. V. Hinshaw, Jr and L. S. Ettre, Selectivity tuning of serially connected open-tubular (capillary) columns in gas chromatography. Part 1 fundamental relationships , Chromatographia 21 561-572 (1986). [Pg.106]

Chromatographic plates can be connected for both capillary-controlled and forced-flow planar chromatography (FFPC), i.e. irrespective of whether capillary action or forced-flow is the driving force for the separation. The first technique is denoted as grafted planar chromatography (31), while the second is known as long distance (LD) OPLC, which uses heterolayers (32, 33). [Pg.186]

SERIALLY CONNECTED MULTILAYER FORCED-FLOW PLANAR CHROMATOGRAPHY... [Pg.188]

Figure 13.9 Coupled-column RPLC-UV (215 nm) analysis of 100 p.1 of an extract of a spiked soil sample (fenpropimoiph, 0.052 mg Kg ). LC conditions C-1, 5 p.m Hypersil SAS (60 m X 4.6 mm i.d.) C-2, 5 p.m Hypersil ODS (150 m X 4.6 mm i.d.) M-1, acetonitrile-0.5 % ammonia in water (50 50, v/v) M-2, acetonitrile-0.5 % ammonia in water (90 10, v/v) flow-rate, 1 ml min clean-up volume, 5.9 ml transfer volume, 0.45 ml. The dashed line represents the cliromatogram obtained when using the two columns connected in series without column switcliing. Reprinted from Journal of Chromatography A, 703, E. A. Hogendoom and R van Zoonen, Coupled-column reversed-phase liquid cliromatography in envir onmental analysis , pp. 149-166, copyright 1995, with permission from Elsevier Science. Figure 13.9 Coupled-column RPLC-UV (215 nm) analysis of 100 p.1 of an extract of a spiked soil sample (fenpropimoiph, 0.052 mg Kg ). LC conditions C-1, 5 p.m Hypersil SAS (60 m X 4.6 mm i.d.) C-2, 5 p.m Hypersil ODS (150 m X 4.6 mm i.d.) M-1, acetonitrile-0.5 % ammonia in water (50 50, v/v) M-2, acetonitrile-0.5 % ammonia in water (90 10, v/v) flow-rate, 1 ml min clean-up volume, 5.9 ml transfer volume, 0.45 ml. The dashed line represents the cliromatogram obtained when using the two columns connected in series without column switcliing. Reprinted from Journal of Chromatography A, 703, E. A. Hogendoom and R van Zoonen, Coupled-column reversed-phase liquid cliromatography in envir onmental analysis , pp. 149-166, copyright 1995, with permission from Elsevier Science.
The quasi-isostatic method is a variation of the isostatic method. In this case at least one chamber is completely closed, and there is no connection with atmospheric pressure. However, there must be a difference in penetrant partial pressure or a concentration gradient between the two cell chambers. The concentration of permeant gas or vapor that has permeated through into the lower-concentration chamber can be quantified by a technique such as gas chromatography (2). [Pg.241]

Thin-Layer Chromatography. A study using thin-layer chromatography both for separating components of a pyrethrum extract and for purifying single components has been made. Other reports have mentioned the use of thin-layer chromatography in various connections related to pyrethrin analysis. Stahl (14) reported on pyre-thrins I and II and evidence for presence of other compounds from... [Pg.62]

The dimensions of the exit tube from the detector are not critical for analytical separations but they can be for preparative chromatography if fractions are to be collected for subsequent tests or examination. The dispersion that occurs in the detector exit tube is more difficult to measure. Another sample valve can be connected to the detector exit and the mobile phase passed backwards through the detecting system. The same experiment is performed, the same measurements made and the same calculations carried out. The dispersion that occurs in the exit tube is normally considerably greater than that between the column and the detector. However, providing the dispersion is known, the preparative separation can be adjusted to accommodate the exit tube dispersion and allow an accurate collection of each solute band. [Pg.151]

Both MS and NMR coupling to HPLC have been employed for the analysis of p-carotene isomers and determination of lutein and zeaxanthin isomers in spinach, sweet com, and in retina. Capillary high performance hquid chromatography with stop flow connected to NMR (600 MHz) was used for stracture elucidation of all-trans deoxylutein 11 and its isomers.Efforts are in progress to eliminate the remaining major drawbacks such as obligatory use of deuterated solvents in the mobile phase, poor sensitivity, and low throughput of HPLC-NMR analyses. [Pg.470]

Catalytic combustion experiments have been performed in a flow reactor operating below the lower explosion limits using HC/02/He mixtures. The product analysis was done by gas chromatography. FT-IR spectra have been recorded with a Nicolet Magna 750 instrument, using conventional IR cells connected with evacuation-gas manipulation apparatus. The powder was pressed into self-supporting disks, calcined in air at 773 K and outgassed at 773 K for 20 minutes before experiments. [Pg.484]


See other pages where Connecting chromatography is mentioned: [Pg.43]    [Pg.1555]    [Pg.21]    [Pg.6]    [Pg.439]    [Pg.104]    [Pg.228]    [Pg.126]    [Pg.410]    [Pg.188]    [Pg.66]    [Pg.479]    [Pg.4]    [Pg.86]    [Pg.163]    [Pg.2]    [Pg.679]    [Pg.476]    [Pg.133]    [Pg.81]    [Pg.68]    [Pg.159]    [Pg.189]    [Pg.231]    [Pg.938]    [Pg.120]    [Pg.169]    [Pg.22]    [Pg.120]    [Pg.465]    [Pg.214]    [Pg.226]    [Pg.149]    [Pg.46]    [Pg.331]   
See also in sourсe #XX -- [ Pg.189 ]




SEARCH



Connecting liquid chromatography

© 2024 chempedia.info