Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Configuration macromolecule

Mancera M., Roffe 1., Al-Kass S.S.J., Rivas M., Galbis J.A., Synthesis and characterization of new stereoregular AABB-type polyamides from carbohydrate-based monomers having D-manno and L-ido configurations. Macromolecules, 36, 2003,1089-1097. [Pg.113]

Viscosity additives are aliphatic polymers of high molecular weight whose main chain is flexible. It is known that in a poor solvent, interactions between the elements making up the polymer chain are stronger than interactions between the solvent and the chain (Quivoron, 1978), to the point that the polymer chain adopts a ball of yarn configuration. The macromolecules in this configuration occupy a small volume. The viscosity of a solution being related to the volume occupied by the solute, the effect of polymers on the viscosity in a poor solvent will be small. [Pg.355]

Process Description Microfiltration (MF) separates particles from true solutions, be they liquid or gas phase. Alone among the membrane processes, microfiltration may be accomplished without the use of a membrane. The usual materi s retained by a microfiltra-tion membrane range in size from several [Lm down to 0.2 [Lm. At the low end of this spectrum, very large soluble macromolecules are retained by a microfilter. Bacteria and other microorganisms are a particularly important class of particles retained by MF membranes. Among membrane processes, dead-end filtration is uniquely common to MF, but cross-flow configurations are often used. [Pg.2043]

In a detailed study on shear degradation of DNA, Adam and Zimm found a complex dependence of kc on solution viscosity. Considering that the macromolecules can rupture only after tumbling had brought them into the right configuration, these authors proposed to include solution viscosity into the pre-exponential factor A (l/r)s) [84],... [Pg.112]

Various ligands bind to their protein sites in a diffusive motion. Similarly, the distance between different ends of a folded macromolecule changes in a way which can be described as a diffusive motion in the presence of a constraint potential (that keeps the parts of the molecule near their folded configurations). Brownian-type diffusive motion in the absence of a restrictive potential is characterized by a diffusion constant (Ref. 6)... [Pg.120]

Chymotrypsin, 170,171, 172, 173 Classical partition functions, 42,44,77 Classical trajectories, 78, 81 Cobalt, as cofactor for carboxypeptidase A, 204-205. See also Enzyme cofactors Condensed-phase reactions, 42-46, 215 Configuration interaction treatment, 14,30 Conformational analysis, 111-117,209 Conjugated gradient methods, 115-116. See also Energy minimization methods Consistent force field approach, 113 Coulomb integrals, 16, 27 Coulomb interactions, in macromolecules, 109, 123-126... [Pg.230]

In the unstressed state the molecules of an elastomer adopt a more-or-less randomly coiled configuration. When the elastomer is subjected to stress the bulk material experiences a significant deformation, as the macromolecules adopt an extended configuration. When the stress is removed, the molecules revert to their equilibrium configurations, as before, and the material returns to its undeformed dimensions. [Pg.111]

In order to understand polymer solution behaviour, the samples have to be characterised with respect to their molecular configuration, their molar mass and polydispersity, the polymer concentration and the shear rate. Classical techniques of polymer characterisation (light scattering, viscometry, ultracentrifugation, etc.) yield information on the solution structure and conformation of single macromolecules, as well as on the thermodynamic interactions with the solvent. In technical concentrations the behaviour of the dissolved polymer is more complicated because additional intramolecular and intermolecular interactions between polymer segments appear. [Pg.8]

The velocity gradient leads to an altered distribution of configuration. This distortion is in opposition to the thermal motions of the segments, which cause the configuration of the coil to drift towards the most probable distribution, i.e. the equilibrium s configurational distribution. Rouse derivations confirm that the motions of the macromolecule can be divided into (N-l) different modes, each associated with a characteristic relaxation time, iR p. In this case, a generalised Maxwell model is obtained with a discrete relaxation time distribution. [Pg.25]

Based on the RIS Ansatz, the embedding algorithm benefits from a great flexibility in the choice of the input parameters that account for the local chain energy configuration the input for the correlations of torsion angles along the chain backbones can be either calculated with the help of a force field, or extracted from measurements, or even biased in order to study any thinkable structural properties of the macromolecules. [Pg.152]

Polymer products synthesized in laboratories and in industry represent a set of individual chemical compounds whose number is practically infinite. Macro-molecules of such products can differ in their degree of polymerization, tactici-ty, number of branchings and the lengths that connect their polymer chains, as well as in other characteristics which describe the configuration of the macromolecule. In the case of copolymers their macromolecules are known to also vary in composition and the character of the alternation of monomeric units of different types. As a rule, it is impossible to provide an exhaustive quantitative description of such a polymer system, i.e. to indicate concentrations of all individual compounds with a particular chemical (primary) structure. However, for many practical purposes it is often enough to define a polymer specimen only in terms of partial distributions of molecules for some of their main characteristics (such as, for instance, molecular weight or composition) avoiding completely a... [Pg.162]

Because of their high molecular weight and their defined structure, dendrimers offer themselves for studying the expression of chirality on a macromolecular level. The construction of configurationally uniform macromolecules is otherwise a complex task but can be achieved more easily with dendrimers because of repetitive synthesis from identical (chiral) building blocks. Comparison of optical rotation values and circular dichroism (CD) spectra should demonstrate what influence there is of the chiral building blocks on the structure of the whole dendrimer. [Pg.150]

Thus, as can be inferred from the foregoing, the calculation of any statistical characteristics of the chemical structure of Markovian copolymers is rather easy to perform. The methods of statistical chemistry [1,3] can reveal the conditions for obtaining a copolymer under which the sequence distribution in macromolecules will be describable by a Markov chain as well as to establish the dependence of elements vap of transition matrix Q of this chain on the kinetic and stoichiometric parameters of a reaction system. It has been rigorously proved [ 1,3] that Markovian copolymers are formed in such reaction systems where the Flory principle can be applied for the description of macromolecular reactions. According to this fundamental principle, the reactivity of a reactive center in a polymer molecule is believed to be independent of its configuration as well as of the location of this center inside a macromolecule. [Pg.148]


See other pages where Configuration macromolecule is mentioned: [Pg.398]    [Pg.539]    [Pg.291]    [Pg.317]    [Pg.579]    [Pg.272]    [Pg.237]    [Pg.214]    [Pg.241]    [Pg.454]    [Pg.516]    [Pg.2]    [Pg.638]    [Pg.67]    [Pg.293]    [Pg.40]    [Pg.115]    [Pg.130]    [Pg.111]    [Pg.392]    [Pg.59]    [Pg.84]    [Pg.163]    [Pg.168]    [Pg.170]    [Pg.37]    [Pg.566]    [Pg.567]    [Pg.105]    [Pg.106]    [Pg.153]    [Pg.65]    [Pg.136]    [Pg.87]    [Pg.144]    [Pg.149]   
See also in sourсe #XX -- [ Pg.438 ]




SEARCH



© 2024 chempedia.info