Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Configuration interaction perturbation theory

It is appropriate at this point to compare some formal properties of the three general approaches to dynamical correlation that we have introduced configuration interaction, perturbation theory, and the coupled-cluster approach. First, we note that taken fax enough (all degrees of excitation in Cl and CC, infinite order of perturbation theory) all three approaches will give the same answer. Indeed, in a complete one-paxticle basis all three will then give the exact answer. We axe concerned in this section with the properties of truncated Cl and CC methods and finite-order perturbation theory. [Pg.338]

The set of atomic orbitals Xk is called a basis set, and the quality of the basis set will usually dictate the accuracy of the calculations. For example, the interaction energy between an active site and an adsorbate molecule might be seriously overestimated because of excessive basis set superposition error (BSSE) if the number of atomic orbitals taken in Eq. [4] is too small. Note that Hartree-Fock theory does not describe correlated electron motion. Models that go beyond the FiF approximation and take electron correlation into account are termed post-Flartree-Fock models. Extensive reviews of post-HF models based on configurational interaction (Cl) theory, Moller-Plesset (MP) perturbation theory, and coupled-cluster theory can be found in other chapters of this series. ... [Pg.152]

By ab initio we refer to quantum chemical methods in which all the integrals of the theory, be it variational or perturbative, are exactly evaluated. The level of theory then refers to the type of theory employed. Common levels of theory would include Hartree-Fock, or molecular orbital theory, configuration interaction (Cl) theory, perturbation theory (PT), coupled-cluster theory (CC, or coupled-perturbed many-electron theory, CPMET), etc. - We will use the word model to designate approximations to the Hamiltonian. For example, the zero differential overlap models can be applied at any level of theory. The distinction between semiempirical and ab initio quantum chemistry is often not clean. Basis sets, for example, are empirical in nature, as are effective core potentials. The search for basis set parameters is not usually considered to render a model empirical, whereas the search for parameters in effective core potentials is so considered. [Pg.313]

Although a wide variety of theoretical methods is available to study weak noncovalent interactions such as hydrogen bonding or dispersion forces between molecules (and/or atoms), this chapter focuses on size consistent electronic structure techniques likely to be employed by researchers new to the field of computational chemistry. Not stuprisingly, the list of popular electronic structure techniques includes the self-consistent field (SCF) Hartree-Fock method as well as popular implementations of density functional theory (DFT). However, correlated wave function theory (WFT) methods are often required to obtain accmate structures and energetics for weakly bound clusters, and the most useful of these WFT techniques tend to be based on many-body perturbation theory (MBPT) (specifically, Moller-Plesset perturbation theory), quadratic configuration interaction (QCI) theory, and coupled-cluster (CC) theory. [Pg.42]

Gauss, J. and Cremer, D. (1992). Analytical energy gradients in M0ller-Plesset perturbation and quadratic configuration interaction methods theory and application. Adv. Quantum Chem., 23, 205-299. [Pg.286]

Well-defined variational (Cl-type see Configuration Interaction), perturbational (MPn see M0ller-Plesset Perturbation Theory), and coupled cluster (CC see Coupled-cluster Theory) techniques have all been employed to determine anharmonic force fields. Important conclusions of these studies include (1) Near equilibrium, the correlation energy is a low-order function of the bond distances,even a linear approximation is meaningful(2) For open-shell species, spin contamination can significantly deteriorate results if a... [Pg.26]

Benchmark Studies on Small Molecules Configuration Interaction Gradient Theory Green s Functions and Propagators for Chemistry Molecular Magnetic Properties Mpl-ler-Plesset Perturbation Theory ru-Dependent Wavefunc-tions Spin Contamination. [Pg.633]

First-principles models of solid surfaces and adsorption and reaction of atoms and molecules on those surfaces range from ab initio quantum chemistry (HF configuration interaction (Cl), perturbation theory (PT), etc for details see chapter B3.1 ) on small, finite clusters of atoms to HF or DFT on two-dimensionally infinite slabs. In between these... [Pg.2221]

Configuration interaction (Cl) is a systematic procedure for going beyond the Hartree-Fock approximation. A different systematic approach for finding the correlation energy is perturbation theory... [Pg.236]

The amount of computation for MP2 is determined by the partial transformation of the two-electron integrals, what can be done in a time proportionally to m (m is the number of basis functions), which is comparable to computations involved in one step of CID (doubly-excited configuration interaction) calculation. To save some computer time and space, the core orbitals are frequently omitted from MP calculations. For more details on perturbation theory please see A. Szabo and N. Ostlund, Modem Quantum Chemistry, Macmillan, New York, 1985. [Pg.238]

There are three main methods for calculating electron correlation Configuration Interaction (Cl), Many Body Perturbation Theory (MBPT) and Coupled Cluster (CC). A word of caution before we describe these methods in more details. The Slater determinants are composed of spin-MOs, but since the Hamilton operator is independent of spin, the spin dependence can be factored out. Furthermore, to facilitate notation, it is often assumed that the HF determinant is of the RHF type. Finally, many of the expressions below involve double summations over identical sets of functions. To ensure only the unique terms are included, one of the summation indices must be restricted. Alternatively, both indices can be allowed to run over all values, and the overcounting corrected by a factor of 1/2. Various combinations of these assumptions result in final expressions which differ by factors of 1 /2, 1/4 etc. from those given here. In the present book the MOs are always spin-MOs, and conversion of a restricted summation to an unrestricted is always noted explicitly. [Pg.101]

Connections between Coupled Cluster, Configuration Interaction and Perturbation Theory... [Pg.136]

COUPLED CLUSTER, CONFIGURATION INTERACTION AND PERTURBATION THEORY... [Pg.137]

If we except the Density Functional Theory and Coupled Clusters treatments (see, for example, reference [1] and references therein), the Configuration Interaction (Cl) and the Many-Body-Perturbation-Theory (MBPT) [2] approaches are the most widely-used methods to deal with the correlation problem in computational chemistry. The MBPT approach based on an HF-SCF (Hartree-Fock Self-Consistent Field) single reference taking RHF (Restricted Hartree-Fock) [3] or UHF (Unrestricted Hartree-Fock ) orbitals [4-6] has been particularly developed, at various order of perturbation n, leading to the widespread MPw or UMPw treatments when a Moller-Plesset (MP) partition of the electronic Hamiltonian is considered [7]. The implementation of such methods in various codes and the large distribution of some of them as black boxes make the MPn theories a common way for the non-specialist to tentatively include, with more or less relevancy, correlation effects in the calculations. [Pg.39]


See other pages where Configuration interaction perturbation theory is mentioned: [Pg.13]    [Pg.528]    [Pg.13]    [Pg.528]    [Pg.322]    [Pg.239]    [Pg.322]    [Pg.170]    [Pg.165]    [Pg.446]    [Pg.438]    [Pg.63]    [Pg.242]    [Pg.1706]    [Pg.503]    [Pg.253]    [Pg.40]    [Pg.40]    [Pg.123]    [Pg.443]    [Pg.2]    [Pg.29]    [Pg.283]    [Pg.319]    [Pg.54]    [Pg.56]    [Pg.361]    [Pg.124]    [Pg.219]    [Pg.194]    [Pg.36]    [Pg.146]    [Pg.35]    [Pg.67]    [Pg.201]    [Pg.139]    [Pg.292]   
See also in sourсe #XX -- [ Pg.165 ]




SEARCH



Configuration Interaction

Configuration interaction theory

Configurational interaction

Interaction Theory

Perturbational configuration interaction

Perturbative Configuration Interaction

© 2024 chempedia.info