Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conducting polymer-based military applications

In the nanotechnology field, carbon-based materials and associated composites have received special attention both for fundamental and applicative research. In the first kind, carbon compounds may be included, often taking the form of a hollow spheres, ellipsoids, or mbes. Spherical and ellipsoidal carbon nanomaterials are referred to as fullerenes, while cylindrical ones are called nanombes and nanofibers. In the second class, one includes composite materials that combine carbon nanoparticles with other nanoparticles, or nanoparticles with large bulk-type materials. The unique properties of these various types of nanomaterials provide novel electrical, catalytic, magnetic, mechanical, thermal, and other features that are desirable for applications in commercial, medical, military, and enviromnental sectors. This is the case for conducting polymers (CPs) and carbon nanombes (CNTs) [1-5]. [Pg.209]

Shahinpoor [930], working at the "Artificial Muscles Research Institute", University of New Mexico, Albuquerque, NM, USA, fabricated devices for a wide variety of applications based on electrochemomechanical principles, from ion conducting polymers (not CPs). These polymers included poly(acrylic acid-bisacrylamide) (PAAM), poly(2-acrylamido-2-methylpropanesulfonic acid (Poly(AMPS)), and polyacrylonitrile (PAN). While these are not CPs, Shahinpoor also indicated that similar action could be expected, with minor modifications, from CPs such as poly (ary lene vinylenes) and poly(thienylene vinylenes). Shahinpoor typically used a metal (e.g. Pt) + ion conductive polymer composite in place of the customary bilayers. Some of the applications envisioned, or demonstrated for ion conductive polymers, included microactuators, motion sensors, accelerometers, oscillating artificial muscles, inchworms, cardiac>circulation assistants, noiseless propulsion swimming robots for military applications, fully constituted contractile artificial muscles, miniature flying machines, and electrically controllable adaptive optical lenses (Fig. 21-51. The potential military applications of these have fueled much interest recently [931]. [Pg.569]


See other pages where Conducting polymer-based military applications is mentioned: [Pg.66]    [Pg.106]    [Pg.300]    [Pg.220]    [Pg.119]    [Pg.572]    [Pg.126]    [Pg.185]    [Pg.1011]    [Pg.173]    [Pg.1174]    [Pg.145]    [Pg.262]    [Pg.95]   
See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Conducting application

Conducting polymer-based

Conducting polymers, applications

Conductive applications

Conductive polymer-based

Conductive polymers applications

MILITARY APPLICATIONS

© 2024 chempedia.info