Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Condensation polymers, synthesis

Polyesters are a second class of condensation polymers and the principles behind their synthesis parallel those of polyamides Ester formation between the functional groups of a dicarboxylic acid and a diol... [Pg.869]

The emphasis in the approaches to boron nitride [10043-11 -5] BN, precursors has been concentrated on cycHc compounds. There have been recent reports of trimethylsilyl-substituted aminoboranes being evaluated as B—N precursors. These are linear borylamines containing up to four boron atoms. Compounds were also synthesized with free —NH2 groups amenable to condensation with either dihaloboranes or dihaloborazines (65) and offering suitable monomers for linear B—N polymer synthesis and borazine-ring-linking appHcations. [Pg.263]

C13-0093. Condensation polymers are usually made from two different monomers, each of which has two of the same functional group. Give three reasons that this strategy is used so often in polymer synthesis. [Pg.966]

Representative condensation polymers are listed in Table I. The list is by no means exhaustive, but it serves to indicate the variety of condensation reactions which may be employed in the synthesis of polymers. Cellulose and proteins, although their syntheses have not been accomplished by condensation polymerization in the laboratory, nevertheless are included within the definition of condensation polymers on the ground that they can be degraded, hydrolytically, to monomers differing from the structural units by the addition of the elements of a molecule of water. This is denoted by the direction of the arrows in the table, indicating depolymerization. [Pg.40]

The chemical and physical properties of the polymers obtained by these alternate methods are identical, except insofar as they are affected by differences in molecular weight. In order to avoid the confusion which would result if classification of the products were to be based on the method of synthesis actually employed in each case, it has been proposed that the substance be referred to as a condensation polymer in such instances, irrespective of whether a condensation or an addition polymerization process was used in its preparation. The cyclic compound is after all a condensation product of one or more bifunctional compounds, and in this sense the linear polymer obtained from the cyclic intermediate can be regarded as the polymeric derivative of the bifunctional monomer(s). Furthermore, each of the polymers listed in Table III may be degraded to bifunctional monomers differing in composition from the structural unit, although such degradation of polyethylene oxide and the polythioether may be difficult. Apart from the demands of any particular definition, it is clearly desirable to include all of these substances among the condensation... [Pg.57]

One previous synthesis of ferrocene-containing condensation polymers via interfacial methods at room temperature has been reported by Knobloch and Rauscher, who formed low molecular weight polyamides and polyesters by reacting l,l -bis(chloro-formyl)ferrocene with various diamines and diols. Further, Carraher and co-workers have utilized interfacial techniques in the formation of other types of organometallic polymers. [Pg.460]

Synthesis and Properties of Fluorine-Containing Aromatic Condensation Polymers Obtained from Bisphenol AF and Its Derivatives... [Pg.127]

Research on fluorine-containing condensation polymers is rather limited compared to that on fluorine-containing addition polymers. This fact is attributed to the difficulty in synthesis and the high cost of fluorine-containing condensation monomers. Recently, 2,2-bis(4-hydroxyhpenyl)-1,1,1,3,3,3-hexafluoropropane (Bisphenol AF) with a hexafluoroisopropylidene unit, HOC6H4C(CF3)2-C6H4OH, was produced commercially from hexafluoroacetone and phenol, and now Bisphenol AF and its derivatives are available as condensation monomers. [Pg.128]

This chapter deals with the synthesis and properties of fluorine-containing condensation polymers from Bishpenol AF and its derivatives. Much of the work reported has been conducted in our laboratory. An extensive review has already been published by Cassidy and co-workers1 on the synthesis of fluorine-... [Pg.128]

This is the simplest process and is widely used for synthesis of condensation polymers. The system is homogeneous and consists of monomer/polymer. In this process the monomer and initiator are kept in a reactor and heated to suitable temperature. The chain transfer agent whenever used for controlling the Molecular weight is also dissolved in the monomer. [Pg.14]

Dendrimer synthesis involves a repetitive building of generations through alternating chemistry steps which approximately double the mass and surface functionality with every generation as discussed earlier [1-4, 18], Random (statistical) hyperbranched polymer synthesis involves the self-condensation of multifunctional monomers, usually in a one-pot single series of covalent formation events [31], Random hyperbranched polymers and dendrimers of comparable molecular mass have the same number of branch points and terminal units, and any application requiring only these two characteristics could be satisfied by either architectural type. Since dendrimer synthesis requires many defined synthetic and process purification steps while hyperbranched synthesis may involve a one-pot synthetic step with no purification, the dendrimers will necessarily be a much more expensive material to produce. [Pg.266]

Because commercial synthetic thermoplastic polymers are either addition polymers or condensation polymers, depolymerization occurs by different routes. Addition polymers, for which the synthesis reactions are essentially not reversible, depolymerize by pyrolysis or such severe chemical attack that few useful monomers can be practically recovered. With pyrolysis, a wide spectrum of species are created, which offers little in the way of valuable reaction products without costly separation processes. The overall yield to desired products can be unattractively low. [Pg.566]

Step-growth condensation polymers, such as polyesters and polyamides, are formed by reversible reactions. In the case of PET, the commercial synthesis is essentially carried out by two reactions. The first is the formation of bishydroxyethyl terephthalate by esterification of a diacid with a glycol or by transesterification of a diester with a glycol. The second is the formation of the polymer by a polycondensation reaction. [Pg.566]

When Paul Flory wrote his famous book Principles of Polymer Chemistry in 1952, he indicated an alternative scheme for polymer synthesis [1]. He theorized about synthesizing condensation polymers from multifunctional monomers. These polymers were predicted to have a broad molecular weight distribution and to be non-entangled and non-crystalline due to their highly branched structure. However, they were considered to be less interesting since they would provide materials with poor mechanical strength, and at that time Flory did not feel it was worthwhile pursuing this line of research. [Pg.4]

Polymer Synthesis and Modification. The condensation reaction between either BTDA or BDSDA and ODA was performed in DMAc at room temperature under a nitrogen atmosphere. ODA (0.004 mole) was added to a nitrogen-purged glass septum bottle with 7 ml DMAc. One of the dianhydrides (0.004 mole) was then added to the diamine solution with an additional milliliter of DMAc resulting in 15-25 wt% solids depending upon the monomer combination. The resulting solution was stirred for 20-24 hours to form the poly(amide acid), a polyimide precursor. For the modified polyimides, anhydrous cobalt(II) chloride (0.001 mole) was added as a solid within one-half hour after the dianhydride. [Pg.396]

The previous sections describe the synthesis of a number of important condensation polymers. Here, we will briefly consider the three main synthetic techniques utilized in the synthesis of these polymers. [Pg.122]

Most of the monomers widely employed for both vinyl and condensation polymers are derived indirectly from simple feedstock molecules. This synthesis of monomers is a lesson in inventiveness. The application of the saying that necessity is the mother of invention has led to the sequence of chemical reactions where little is wasted and by-products from one reaction are employed as integral materials in another. Following is a brief look at some of these pathways traced from basic feedstock materials. It must be remembered that often many years of effort are involved in discovering the conditions of pressure, temperature, catalysts, etc. that must be present as one goes from the starting materials to the products. [Pg.525]

The common condensation polymers and the reactions by which they are formed are shown in Table 1-1. It should be noted from Table 1-1 that for many of the condensation polymers there are different combinations of reactants that can be employed for their synthesis. Thus polyamides can be synthesized by the reactions of diamines with diacids or diacyl chlorides and by the self-condensation of amino acids. Similarly, polyesters can be synthesized from diols by esterification with diacids or ester interchange with diesters. [Pg.2]

Some naturally occurring polymers such as cellulose, starch, wool, and silk are classified as condensation polymers, since one can postulate their synthesis from certain hypothetical reactants by the elimination of water. Thus cellulose can he thought of as the polyether formed by the dehydration of glucose. Carothers included such polymers by defining condensation polymers as those in which the formula of the repeating unit lacks certain atoms that are present in the monomer(s) from which it is formed or to which it may be degraded. In this... [Pg.2]

In summary, a polymer is classified as a condensation polymer if its synthesis involves the elimination of small molecules, or it contains functional groups as part of the polymer chain, or its repeating unit lacks certain atoms that are present in the (hypothetical) monomer to which it can be degraded. If a polymer does not fulfill any of these requirements, it is classified as an addition polymer. [Pg.6]


See other pages where Condensation polymers, synthesis is mentioned: [Pg.539]    [Pg.43]    [Pg.136]    [Pg.113]    [Pg.186]    [Pg.250]    [Pg.128]    [Pg.72]    [Pg.77]   


SEARCH



Condensation polymers

Polymer condensation polymers

© 2024 chempedia.info