Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Condensation electrode reactions

In the closely related coulostatic method based on injection of a charge from a small condenser into an electrode in equilibrium with a redox system. The resulting time dependence of the electrode potential originates from the discharging of the electrical double layer by electrode reactions... [Pg.311]

Nov. 21, 1931, Tbilisi, Georgia, USSR - May 13, 1985) Dogonadze was one of the founders of the new science - electrochemical physics [i]. The main scientific interests of Dogonadze were focused on condensed-phase reactions. His pioneering works of 1958-59 have laid the foundations of the modern quantum-mechanical theory of elementary chemical processes in electrolyte solutions. He developed a comprehensive quantum-mechanical theory of the elementary act of electrochemical reactions of -> electron and -> proton transfer at metal and - semiconductor electrodes [ii—v]. He was the first to obtain, by a quantum-mechanical calculation, the expression for the electron transfer probability, which was published in 1959 in his work with -> Levich. He conducted a number of studies on the theory of low-velocity electrons in disordered systems, theory of solvated electrons, and theory of photochemical processes in solutions. He made an impressive contribution to the theory of elementary biochemical processes [vi]. His work in this area has led to the foundation of the theory of low-temperature -> charge-transfer processes cov-... [Pg.166]

At open circuit, electrode reactions that charge the electrodes lead to a slow oxidation of the electrolyte with H2 evolution at the anode and O2 evolution at the cathode. These reactions represent an irreversible self-discharge. Once the electrolyte is introduced, the battery has a poor shelf life. Under development are acidic aqueous electrolytes in which Pb(II) is soluble rather than condensing into the solid PbS04. This development of the lead-acid cell promises a flow battery not requiring a separation membrane. The separation membrane of redox-flow batteries (see last section) remains a challenging problem for the aqueous redox-flow technology. [Pg.67]

In this section primarily reductions of aldehydes, ketones, and esters with sodium, lithium, and potassium in the presence of TCS 14 are discussed closely related reductions with metals such as Zn, Mg, Mn, Sm, Ti, etc., in the presence of TCS 14 are described in Section 13.2. Treatment of ethyl isobutyrate with sodium in the presence of TCS 14 in toluene affords the O-silylated Riihlmann-acyloin-condensation product 1915, which can be readily desilylated to the free acyloin 1916 [119]. Further reactions of methyl or ethyl 1,2- or 1,4-dicarboxylates are discussed elsewhere [120-122]. The same reaction with trimethylsilyl isobutyrate affords the C,0-silylated alcohol 1917, in 72% yield, which is desilylated to 1918 [123] (Scheme 12.34). Likewise, reduction of the diesters 1919 affords the cyclized O-silylated acyloin products 1920 in high yields, which give on saponification the acyloins 1921 [119]. Whereas electroreduction on a Mg-electrode in the presence of MesSiCl 14 converts esters such as ethyl cyclohexane-carboxylate via 1922 and subsequent saponification into acyloins such as 1923 [124], electroreduction of esters such as ethyl cyclohexylcarboxylate using a Mg-electrode without Me3SiCl 14 yields 1,2-ketones such as 1924 [125] (Scheme 12.34). [Pg.281]

The effects of transfer of atoms by tunneling may play an essential role in a number of phenomena involving the transfer of atoms and atomic groups in the condensed phase. One may expect that these effects may exist not only in the proton transfer reactions considered above but also in such processes as the diffusion of hydrogen atoms and other light ions (e.g., Li+) in liquids, tunnel inversion and isomerization in some molecules, quantum diffusion of defects and light atoms in the electrode at cathodic incorporation of the ions, ion transfer across the liquid/solid interface, and low-temperature chemical reactions. [Pg.142]

A different view of the OMT process is that the molecule, M, is fully reduced, M , or oxidized, M+, during the tunneling process [25, 26, 92-95]. In this picture a fully relaxed ion is formed in the junction. The absorption of a phonon (the creation of a vibrational excitation) then induces the ion to decay back to the neutral molecule with emission (or absorption) of an electron - which then completes tunneling through the barrier. For simplicity, the reduction case will be discussed in detail however, the oxidation arguments are similar. A transition of the type M + e —> M is conventionally described as formation of an electron affinity level. The most commonly used measure of condensed-phase electron affinity is the halfwave reduction potential measured in non-aqueous solvents, Ey2. Often these values are tabulated relative to the saturated calomel electrode (SCE). In order to correlate OMTS data with electrochemical potentials, we need them referenced to an electron in the vacuum state. That is, we need the potential for the half reaction ... [Pg.204]

The systematic representation of the time dependence of chemical reactions occurring at an electrode surface. These reactions can be analyzed as a succession of events (a) diffusion of reactants within the bulk solution to the more condensed layer of solution near the electrode surface (b) penetration of that layer to achieve adsorption on the electrode s surface (c) electron transfer to (i.e., reduction) or from oxidation) the adsorbed reactant(s) product desorption, penetration of the condensed layer, and diffusion into the bulk solution. [Pg.222]

The oxidation reactions were performed in a 200 cm glass reactor, equipped with gas distributer, condenser, thermometer, measuring and reference electrodes. The mixing frequency of the magnetic stirrer was 1500 min 75 mg Pt or 450 mg Pt-on-alumina catalyst was prereduced in nitrogen atmosphere at 60 °C with 3.67 g or 3.00 g 1-phenylethanol, respectively. The solvent composition was 35 cm water +... [Pg.309]

Electrolytic polymerization or electrolytically initiated polymerization, or shortly electro-initiated polymerization or electropolymerization, generally means initiation by the electron transfer processes which occur at the electrodes of an electrolytic cell containing monomer and electrolyte, in that by controlling the electrolysis current it is possible to control the generation of initiating species. Under appropriate conditions it may proceed by a free radical, anionic or cationic mechanism. In addition to the electrolytic addition polymerization, production of polymers through condensation reaction by electrolytic means should also be covered. Examples of each of these propagation mechanisms have now been reported in the literature. [Pg.377]

Generation of free-radicals by Kolbe s reaction is well-known [Eq. (10)]. Formation of a radical-cation of monomer [Eq. (11)] has never been been proved and is only a possible conjecture from the right reverse consideration of the radical-anion formation at the cathode [Eq. (6)], although the perchlorate anion has actually been found to yield an unstable perchlorate free-radical by discharge at the anode. Nor is it certain that the monomer radical-cation is formed by direct discharge from the anode [Eq. (12)]. The ring-opening polymerization of oxides, caprolactam and isocyanides is also initiated on the electrode. A few examples of condensation polymerization have developed recently, like Eq. (7) and (12). Details of this work are described in the appropriate section. [Pg.380]

The ready availability of electricity following the invention by Alssandro Volta of his famous pile in 1800 prompted, from an early date, the study of its effects on condensed matter and, most particularly, the decomposition of water by electrolysis involving chemical reactions at the electrodes. Work developed to the point where, by the middle of the second half of the nineteenth century, well-established industrial processes for the manufacture of aluminium and chlorine gas operated by electrolysis. [Pg.1]


See other pages where Condensation electrode reactions is mentioned: [Pg.173]    [Pg.380]    [Pg.208]    [Pg.13]    [Pg.57]    [Pg.688]    [Pg.1]    [Pg.42]    [Pg.118]    [Pg.219]    [Pg.220]    [Pg.13]    [Pg.197]    [Pg.198]    [Pg.405]    [Pg.173]    [Pg.409]    [Pg.170]    [Pg.933]    [Pg.311]    [Pg.44]    [Pg.160]    [Pg.103]    [Pg.335]    [Pg.194]    [Pg.695]    [Pg.377]    [Pg.63]    [Pg.166]    [Pg.149]    [Pg.318]    [Pg.81]    [Pg.116]    [Pg.294]    [Pg.47]    [Pg.143]    [Pg.364]    [Pg.4]   


SEARCH



Electrode reactions

© 2024 chempedia.info