Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Concentration Using Membranes

Clair It al (1996) reported major losses of concentrate due to the plumbing of their RO plant and observed precipitation in most samples. It was further reported that polycondensation reactions in the concentrate occurred which modified the acid-base characteristics. Phenolic compounds appeard to be lost with the permeate, but most likely, aliphatic carbon is lost. Clair it al (1996) considered the application of a cation exchange resin as a possible fractionation step. Sun it al (1995) suggested the use of a Na resin to avoid pH variation which leads to increased loss of organics in the permeate and enhances precipitation. [Pg.314]


FIGURE 2.15 (See color insert following page 588.) Membrane contactor for fruit juice concentration using membrane distillation process. [Pg.19]

Electrodialysis. Electro dialytic membrane process technology is used extensively in Japan to produce granulated—evaporated salt. Filtered seawater is concentrated by membrane electro dialysis and evaporated in multiple-effect evaporators. Seawater can be concentrated to a product brine concentration of 200 g/L at a power consumption of 150 kWh/1 of NaCl (8). Improvements in membrane technology have reduced the power consumption and energy costs so that a high value-added product such as table salt can be produced economically by electro dialysis. However, industrial-grade salt produced in this manner caimot compete economically with the large quantities of low cost solar salt imported into Japan from Austraha and Mexico. [Pg.183]

Concentration of Seawater by ED. In terms of membrane area, concentration of seawater is the second largest use. Warm seawater is concentrated by ED to 18 to 20% dissolved soHds using membranes with monovalent-ion-selective skins. The EDR process is not used. The osmotic pressure difference between about 19% NaCl solution and partially depleted seawater is about 20,000 kPa (200 atm) at 25°C, which is well beyond the range of reverse osmosis. Salt is produced from the brine by evaporation and crystallisa tion at seven plants in Japan and one each in South Korea, Taiwan, and Kuwait. A second plant is soon to be built in South Korea. None of the plants are justified on economic grounds compared to imported solar or mined salt. [Pg.176]

Commercially available plate- and frame- type ultrafiltration equipment are used for exopolysaccharide concentration. The membranes are polysulphone or polyvinylidine fluoride with molecular weight cut-off between 20-60,000. There is a relatively low eneigy requirement (1-2 kWh m 3) for pumping the fluid through the filtration unit at the desired pressure. Pressure difference across the membrane is of the order 2-14 atmospheres. [Pg.212]

Joarmon S, Pin C (2001) Ultra-trace determination of Ra in thermal waters by high sensitivity quadrapole ICP-mass spectrometry following selective extraction and concentration using radium-specific membrane disks. J Anal At Spectrom 16 32-37... [Pg.57]

Separations in membrane processes result from differences in the transport rates of analytes or solvent molecules through a membrane interface. The transport rate is usually determined by the existence of a driving force, such as a concentration, pressure- or temperature gradient and the mobility and concentration of analytes within the Interface. The most useful membrane processes for sampld preparation are dialysis. [Pg.890]

Before the first indication of the existence of cannabinoid receptors, the prevailing theory on the mechanism of cannabinoid activity was that cannabinoids exert their effects by nonspecific interactions with cell membrane lipids (Makriyannis, 1990). Such interactions can increase the membrane fluidity, perturb the lipid bilayer and concomitantly alter the function of membrane-associated proteins (Loh, 1980). A plethora of experimental evidence suggests that cannabinoids interact with membrane lipids and modify the properties of membranes. However, the relevance of these phenomena to biological activities is still only, at best, correlative. An important conundrum associated with the membrane theories of cannabinoid activity is uncertainty over whether cannabinoids can achieve in vivo membrane concentrations comparable to the relatively high concentrations used in in vitro biophysical studies (Makriyannis, 1995). It may be possible that local high concentrations are attainable under certain physiological circumstances, and, if so, some of the cannabinoid activities may indeed be mediated through membrane perturbation. [Pg.101]

In ultrafiltration, the effluent is passed across a semiper-meable membrane (see Chapter 10). Water passes through the membrane, while submicron particles and large molecules are rejected from the membrane and concentrated. The membrane is supported on a porous medium for strength, as discussed in Chapter 10. Ultrafiltration is used to separate very fine particles (typically in the range 0.001 to 0.02 xm), microorganisms and organic components with molar mass down to 1000 kg kmol. Pressure drops are usually in the range 1.5 to 10 bar. [Pg.586]

Membrane transport represents a major application of mass transport theory in the pharmaceutical sciences [4], Since convection is not generally involved, we will use Fick s first and second laws to find flux and concentration across membranes in this section. We begin with the discussion of steady diffusion across a thin film and a membrane with or without aqueous diffusion resistance, followed by steady diffusion across the skin, and conclude this section with unsteady membrane diffusion and membrane diffusion with reaction. [Pg.46]

The specific resistances obtained are independent of applied load, suspension concentration and membrane type, as expected for non-compressible filter cakes. Tests with uniform latex particles have given permeabilities in very good agreement with Equation 2, using a value of 5 for the Carman-Kozeny constant. [Pg.450]

Kasthurikrishnan et al. [243] used membrane mass spectrometry to study the analysis of volatile organic compounds in seawater at ppt concentrations. [Pg.407]

Controls for Membrane Impermeance. Some fluoro-chromes can enter protoplasts via probenecid-sensitive anion channels (19) and control experiments must establish membrane impermeance. Soak the tissues in the fluorochrome at the concentration used for up to 12 h, rinsing and examining the tissues for fluorescence at hourly intervals. Cell viability is assessed by rate of cytoplasmic streaming, or by chloroplast autofluorescence, which declines in dead cells. [Pg.77]

Distribution. Cyanide is rapidly distributed by the blood throughout the body. In a study using orally administered radioactively labelled potassium cyanide, radioactivity detected in whole blood or plasma decreased rapidly within 6 hours. Of the low levels of radioactivity detected in the red blood cells, about 94% of the radioactivity recovered was found in the hemolysate of which 70% was detected in the heme fraction, 14-25% in globin, and only 5-10% in cell membranes (Farooqui and Ahmed 1982). Yamamoto et al. (1982) determined that the pattern of distribution of cyanide did not vary with the concentration used. Ballantyne (1983b) observed higher cyanide levels in whole blood than in serum in rabbits exposed dermally to hydrogen cyanide, potassium cyanide, and sodium cyanide. See Section 2.3.2.1 for specific studies on cyanide tissue distribution. [Pg.84]


See other pages where Concentration Using Membranes is mentioned: [Pg.321]    [Pg.163]    [Pg.314]    [Pg.539]    [Pg.305]    [Pg.321]    [Pg.163]    [Pg.314]    [Pg.539]    [Pg.305]    [Pg.312]    [Pg.530]    [Pg.530]    [Pg.151]    [Pg.459]    [Pg.2034]    [Pg.330]    [Pg.184]    [Pg.75]    [Pg.585]    [Pg.226]    [Pg.2]    [Pg.355]    [Pg.231]    [Pg.444]    [Pg.461]    [Pg.703]    [Pg.73]    [Pg.67]    [Pg.23]    [Pg.477]    [Pg.247]    [Pg.587]    [Pg.222]    [Pg.139]    [Pg.388]    [Pg.407]    [Pg.268]    [Pg.36]    [Pg.539]    [Pg.9]   


SEARCH



© 2024 chempedia.info