Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Concentration dependence, partition coefficients

Watson, E. B., Henry s law behavior in simple systrans and in magmas critraia for discerning concentration-dependent partition coefficients in nature, Geochim. Cosmochim. Acta, 49, 917-923, 1985. [Pg.32]

In spite of these complexities, most analyses of extraction assume linear equihbria. The detailed chemistry appears as a concentration-dependent partition coefficient. While such concentration-dependent partition coefficients are beyond the scope of this book, they are well understood and discussed in detail in more speciahzed references. [Pg.407]

Competition Between Pollutants. Competition between several organic pollutants may affect the photocatalytic degradation rate of each species, depending on whether the process is limited by the irradiation or by the total organic matter. The factors intervening in the competition are the respective concentrations, the partition coefficients between the fluid phase and the adsorbed phase, and the relative reactivities with respect to the active species. Consequently, interference effects may or may not be observed. [Pg.110]

The kinetic data are essentially always treated using the pseudophase model, regarding the micellar solution as consisting of two separate phases. The simplest case of micellar catalysis applies to unimolecTilar reactions where the catalytic effect depends on the efficiency of bindirg of the reactant to the micelle (quantified by the partition coefficient, P) and the rate constant of the reaction in the micellar pseudophase (k ) and in the aqueous phase (k ). Menger and Portnoy have developed a model, treating micelles as enzyme-like particles, that allows the evaluation of all three parameters from the dependence of the observed rate constant on the concentration of surfactant". ... [Pg.129]

The catalytic effect on unimolecular reactions can be attributed exclusively to the local medium effect. For more complicated bimolecular or higher-order reactions, the rate of the reaction is affected by an additional parameter the local concentration of the reacting species in or at the micelle. Also for higher-order reactions the pseudophase model is usually adopted (Figure 5.2). However, in these systems the dependence of the rate on the concentration of surfactant does not allow direct estimation of all of the rate constants and partition coefficients involved. Generally independent assessment of at least one of the partition coefficients is required before the other relevant parameters can be accessed. [Pg.129]

Herein [5.2]i is the total number of moles of 5.2 present in the reaction mixture, divided by the total reaction volume V is the observed pseudo-first-order rate constant Vmrji,s is an estimate of the molar volume of micellised surfactant S 1 and k , are the second-order rate constants in the aqueous phase and in the micellar pseudophase, respectively (see Figure 5.2) V is the volume of the aqueous phase and Psj is the partition coefficient of 5.2 over the micellar pseudophase and water, expressed as a ratio of concentrations. From the dependence of [5.2]j/lq,fe on the concentration of surfactant, Pj... [Pg.135]

Dmg distribution into tissue reservoirs depends on the physicochemical properties of the dmg. Tissue reservoirs include fat, bone, and the principal body organs. Access of dmgs to these reservoirs depends on partition coefficient, charge or degree of ionization at physiological pH, and extent of protein binding. Thus, lipophilic molecules accumulate in fat reservoirs and this accumulation can alter considerably both the duration and the concentration—response curves of dmg action. Some dmgs may accumulate selectively in defined tissues, for example, the tetracycline antibiotics in bone (see Antibiotics,tetracyclines). [Pg.269]

The diffusion coefficient in these phases D,j is usually considerably smaller than that in fluid-filled pores however, the adsorbate concentration is often much larger. Thus, the diffusion rate can be smaller or larger than can be expected for pore diffusion, depending on the magnitude of the flmd/solid partition coefficient. [Pg.1511]

Where is the initial analyte concentration in the liquid phase, C( the concentration of analyte in the gas phase, K the gas-liquid partition coefficient for the analyte at the analysis temperature, V, the volume of liquid phase, and V, the volume of gas phase (318-321,324,325). From equation (8.3) it can be seen that the concentration of the analyte in the headspace above a liquid in equilibrium with a vapor phase will depend on the volume ratio of the geis and liquid phases and the compound-specific partition coefficient which, in turn, is matrix dependent. The sensitivity 1 of the headspace sampling method can be increased in some instances adjusting the pH, salting out or raising the... [Pg.923]

Essentially, extraction of an analyte from one phase into a second phase is dependent upon two main factors solubility and equilibrium. The principle by which solvent extraction is successful is that like dissolves like . To identify which solvent performs best in which system, a number of chemical properties must be considered to determine the efficiency and success of an extraction [77]. Separation of a solute from solid, liquid or gaseous sample by using a suitable solvent is reliant upon the relationship described by Nemst s distribution or partition law. The traditional distribution or partition coefficient is defined as Kn = Cs/C, where Cs is the concentration of the solute in the solid and Ci is the species concentration in the liquid. A small Kd value stands for a more powerful solvent which is more likely to accumulate the target analyte. The shape of the partition isotherm can be used to deduce the behaviour of the solute in the extracting solvent. In theory, partitioning of the analyte between polymer and solvent prevents complete extraction. However, as the quantity of extracting solvent is much larger than that of the polymeric material, and the partition coefficients usually favour the solvent, in practice at equilibrium very low levels in the polymer will result. [Pg.61]

The limitation of Eq. (2.1) is that measurement of concentrations of solute within different parts of the membrane is very inconvenient. However, since we can estimate (or possibly measure) the distribution coefficients between bulk water and the membrane, log Kj (the pH-dependent apparent partition coefficient), we can convert Eq. (2.1) into a more accessible form... [Pg.9]

The partition coefficient is needed to determine the moles lost to the membrane, VM CM(t). If ionizable compounds are considered, then one must decide on the types of partition coefficient to use -Kp (true pH-independent partition coefficient) or Kd (pH-dependent apparent partition coefficient). If the permeability assay is based on the measurement of the total concentrations, Cn(t) and CA(t), summed over all charge-state forms of the molecule, and only the uncharged molecules transport across the membrane to an appreciable extent, it is necessary to consider the apparent partition (distribution) coefficient, Kd, in order to explain the pH dependence of permeability. [Pg.143]

The membrane permeabilities Pm may be converted to intrinsic permeabilities P(h when the pKa is taken into consideration. An ionizable molecule exhibits its intrinsic permeability when it is in its uncharged form and there is no water layer resistance. The relationship between Pm and P0 is like that between the pH-dependent apparent partition coefficient (log Kd) and the true partition coefficient (log Kp), respectively. This relationship can be rationalized by the mass balance. Take, for example, the case of a monoprotic acid, HA. The total substance concentration is... [Pg.200]

Sorption. Capture of neutral organics by non-living particulates depends on the organic carbon content of the solids (9). Equilibrium sorption of such "hydrophobic" compounds can be described by a carbon-normalized partition coefficient on both a whole-sediment basis and by particle size classes. The success of the whole-sediment approach derives from the fact that most natural sediment organic matter falls in the "silt" or "fine" particle size fractions. So long as dissolved concentrations do not exceed 0.01 mM, linear isotherms (partition coefficients) can be used. At higher concentrations, the sorptive capacity of the solid can be exceeded, and a nonlinear Freundlich or Langmuir isotherm must be invoked. [Pg.27]

The data presented here indicates that the extent of binding for a particular compound is related to the octanol/water partition coefficient for that compound. This is very similar to the sorption of compounds from water to sediment. Compounds with log Kow values less than four (such as Lindane) will probably not be bound to an appreciable extent in the environment. Compounds with very high log Kow values (DDT and DEHP) may be bound to a significant extent. The extent of binding will depend on both the concentration of humic material and on the nature of the humic material. The humic materials used in this research showed dramatically different affinities for DDT. The reasons for this are poorly understood and deserve further study. [Pg.227]

As mentioned earlier, ascorbate and ubihydroquinone regenerate a-tocopherol contained in a LDL particle and by this may enhance its antioxidant activity. Stocker and his coworkers [123] suggest that this role of ubihydroquinone is especially important. However, it is questionable because ubihydroquinone content in LDL is very small and only 50% to 60% of LDL particles contain a molecule of ubihydroquinone. Moreover, there is another apparently much more effective co-antioxidant of a-tocopherol in LDL particles, namely, nitric oxide [125], It has been already mentioned that nitric oxide exhibits both antioxidant and prooxidant effects depending on the 02 /NO ratio [42]. It is important that NO concentrates up to 25-fold in lipid membranes and LDL compartments due to the high lipid partition coefficient, charge neutrality, and small molecular radius [126,127]. Because of this, the value of 02 /N0 ratio should be very small, and the antioxidant effect of NO must exceed the prooxidant effect of peroxynitrite. As the rate constants for the recombination reaction of NO with peroxyl radicals are close to diffusion limit (about 109 1 mol 1 s 1 [125]), NO will inhibit both Reactions (7) and (8) and by that spare a-tocopherol in LDL oxidation. [Pg.793]


See other pages where Concentration dependence, partition coefficients is mentioned: [Pg.124]    [Pg.618]    [Pg.124]    [Pg.618]    [Pg.102]    [Pg.545]    [Pg.80]    [Pg.660]    [Pg.136]    [Pg.142]    [Pg.273]    [Pg.615]    [Pg.244]    [Pg.47]    [Pg.64]    [Pg.896]    [Pg.60]    [Pg.159]    [Pg.232]    [Pg.417]    [Pg.611]    [Pg.926]    [Pg.130]    [Pg.202]    [Pg.171]    [Pg.46]    [Pg.138]    [Pg.143]    [Pg.7]    [Pg.81]    [Pg.189]    [Pg.463]    [Pg.532]    [Pg.270]    [Pg.29]   
See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Concentrated dependence

Concentration dependence

Concentration dependence, partition

Concentration dependency

© 2024 chempedia.info