Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compounding, polymer-ceramic

Tetravalent silicon is the only structural feature in all silicon sources in nature, e.g. the silicates and silica even elemental silicon exhibits tetravalency. Tetravalent silicon is considered to be an ana-logon to its group 14 homologue carbon and in fact there are a lot of similarities in the chemistry of both elements. Furthermore, silicon is tetravalent in all industrially used compounds, e.g. silanes, polymers, ceramics, and fumed silica. Also the reactions of subvalent and / or low coordinated silicon compounds normally lead back to tetravalent silicon species. It is therefore not surprising that more than 90% of the relevant literature deals with tetravalent silicon. The following examples illustrate why "ordinary" tetravalent silicon is still an attractive field for research activities Simple and small tetravalent silicon compounds - sometimes very difficult to synthesize - are used by theoreticians and preparative chemists as model compounds for a deeper insight into structural features and the study of the reactivity influenced by different substituents on the silicon center. As an example for industrial applications, the chemical vapor decomposition (CVD) of appropriate silicon precursors to produce thin ceramic coatings on various substrates may be mentioned. [Pg.21]

These clays have been hybridized with diverse structural types of components such as nanoparticles, clusters, complex compounds, polymers, molecules, and ions. Their potential apphcations are found in many fields as inorganic catalysts, adsorbents, ceramics, coatings, and even drug delivery carriers. Various preparation methods have been developed such as pillaring, intercalation, and delamination techniques. The representative examples include organic-clay hybrids," metal oxide-pillared clays, " and bioclay hybrids. ... [Pg.154]

Infiltration combines a melt with a porous free-standing solid (the preform ). In the main and defining step of the process, the melt flows into open pores of the preform after solidification a new material results. Composites of all classes (polymer, ceramic and metal) are produced by this process, as are compounds such as reaction bonded silicon carbide. The process can also be adapted to make open-pored foams of carbon, ceramic, polymer or metal. [Pg.380]

Paradoxically, because interest in modem ceramics came later than interest in metals and polymers, ceramics are simultaneously our oldest and newest solids. Consequently, working in the field of ceramics, while sometimes frustrating, can ultimately be quite rewarding and exciting. There are a multitude of compounds that have never been synthesized, let alone characterized. Amazing discoveries are always around the corner, as the following two examples illustrate. [Pg.10]

A membrane is phase permeable or semipermeable, consisting of polymer, ceramic, or metal, which restricts the mobility of certain compounds. The membrane (barrier) controls the relative rate of mass transport of various compounds through it and then, as in all separations, leads to a free product of certain compounds and a second concentrated product in these compounds. The performance of a membrane is... [Pg.629]

Piezocomposite transducers are an advancement of piezoelectric ceramics. Instead of the classic piezoceramic material, a compound of polymer and piezoceramic is used for the composite element to improve specific properties. The 1-3 structure, which is nowadays mostly used as transducer material, refers to parallel ceramic rods incorporated in an epoxy-resin matrix (see Fig. 1). [Pg.707]

The polymers of the 2-cyanoacryhc esters, more commonly known as the alkyl 2-cyaiioacrylates, are hard glassy resins that exhibit excellent adhesion to a wide variety of materials. The polymers are spontaneously formed when their Hquid precursors or monomers are placed between two closely fitting surfaces. The spontaneous polymerisation of these very reactive Hquids and the excellent adhesion properties of the cured resins combine to make these compounds a unique class of single-component, ambient-temperature-curing adhesives of great versatiUty. The materials that can be bonded mn the gamut from metals, plastics, most elastomers, fabrics, and woods to many ceramics. [Pg.176]

Monovalent cations are good deflocculants for clay—water sHps and produce deflocculation by a cation exchange process, eg, Na" for Ca ". Low molecular weight polymer electrolytes and polyelectrolytes such as ammonium salts (see Ammonium compounds) are also good deflocculants for polar Hquids. Acids and bases can be used to control pH, surface charge, and the interparticle forces in most oxide ceramic—water suspensions. [Pg.307]

While most of the earlier research was done on metals and alloys, more recently a good deal of emphasis has been placed on ceramics and other inorganic compounds, especially functional materials used for their electrical, magnetic or optical properties. A very recent collection of papers on oxides (Boulesteix 1998) illustrates this shift neatly. In the world of polymers, the concepts of phase transformations or phase equilibria do not play such a major role 1 return to this in Chapter 8. [Pg.103]

Organometallic polymer precursors offer the potential to manufacture shaped forms of advanced ceramic materials using low temperature processing. Polysilazanes, compounds containing Si-N bonds in the polymer backbone, can be used as precursors to silicon nitride containing ceramic materials. This chapter provides an overview of the general synthetic approaches to polysilazanes with particular emphasis on the synthesis of preceramic polysilazanes. [Pg.124]

This is one of the main purposes of inorganic polymer research —the search for new and useful compounds and materials that combine the properties of polymers with those of ceramics and/or metals. [Pg.252]


See other pages where Compounding, polymer-ceramic is mentioned: [Pg.24]    [Pg.243]    [Pg.536]    [Pg.1004]    [Pg.1138]    [Pg.299]    [Pg.354]    [Pg.211]    [Pg.229]    [Pg.505]    [Pg.250]    [Pg.248]    [Pg.69]    [Pg.154]    [Pg.345]    [Pg.248]    [Pg.228]    [Pg.77]    [Pg.470]    [Pg.18]    [Pg.211]    [Pg.96]    [Pg.45]    [Pg.823]    [Pg.377]    [Pg.52]    [Pg.81]    [Pg.54]    [Pg.778]    [Pg.3]    [Pg.150]    [Pg.150]    [Pg.151]    [Pg.430]    [Pg.69]    [Pg.122]   


SEARCH



Ceramic compounds

Ceramic polymers

Ceramics) ceramic-polymer

Compounded polymers

© 2024 chempedia.info