Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compounds covalent compounds

Ionic Compounds Covalent Compounds A Human Perspective ... [Pg.81]

Dinitrogen tetroxide is a poor solvent for ionic compounds. Covalent compounds are frequently soluble as are donor compounds which can react with the solvent. [Pg.85]

What about covalent compounds Covalent compounds are nonicmic, molecular compounds. For the most part, they contain only nonmetal atoms. A huge number of such compounds exist, and the naming schemes for these are much more involved than what we have seen for ionic compounds. The schemes we will study in this chapter are limited to compounds that contain only two nonmetals and compounds that are acids. Compounds, whether ionic or covalent, that contain just two elements are called binary compounds. Compounds, whether ionic or covalent, that contain three elements are called ternary compounds. The naming scheme for binary covalent compounds is discussed in Section 3.7. The naming scheme for acids, both binary and ternary, is discussed in Section 3.8. [Pg.75]

Similar cycles may be drawn for covalent compounds. E.g. PCI5 ... [Pg.64]

Born-Haber cycle A thermodynamic cycle derived by application of Hess s law. Commonly used to calculate lattice energies of ionic solids and average bond energies of covalent compounds. E.g. NaCl ... [Pg.64]

For the transition metals it is often impossible to reach a noble gas structure except in covalent compounds (see effective atomic number rule) and it is found that relative stability is given by having the sub-shells (d or f) filled, half-filled or empty. [Pg.415]

The shapes of covalent compounds are determined by the tendency for bonding pairs to be as far apart as possible whilst lone pairs have a greater effect than bonding pairs (VSEPR theory). [Pg.416]

Double bonds also occur in other covalent compounds. By considering each double bond to behave spatially as a single bond we are able to use Table 2.6 to determine the spatial configurations of such compounds. [Pg.40]

In each of the examples given so far each element has achieved a noble gas configuration as a result of electron sharing. There are. however, many examples of stable covalent compounds in which noble gas configurations are not achieved, or are exceeded. In the compounds of aluminium, phosphorus and sulphur, shown below, the central atoms have 6. 10 and 12 electrons respectively involved in bondinc... [Pg.40]

These apparent anomalies are readily explained. Elements in Group V. for example, have five electrons in their outer quantum level, but with the one exception of nitrogen, they all have unfilled (I orbitals. Thus, with the exception of nitrogen. Group V elements are able to use all their five outer electrons to form five covalent bonds. Similarly elements in Group VI, with the exception of oxygen, are able to form six covalent bonds for example in SF. The outer quantum level, however, is still incomplete, a situation found for all covalent compounds formed by elements after Period 2. and all have the ability to accept electron pairs from other molecules although the stability of the compounds formed may be low. This... [Pg.40]

In most covalent compounds, the strong covalent bonds link the atoms together into molecules, but the molecules themselves are held together by much weaker forces, hence the low melting points of molecular crystals and their inability to conduct electricity. These weak intermolecular forces are called van der WaaFs forces in general, they increase with increase in size of the molecule. Only... [Pg.47]

The element before carbon in Period 2, boron, has one electron less than carbon, and forms many covalent compounds of type BX3 where X is a monovalent atom or group. In these, the boron uses three sp hybrid orbitals to form three trigonal planar bonds, like carbon in ethene, but the unhybridised 2p orbital is vacant, i.e. it contains no electrons. In the nitrogen atom (one more electron than carbon) one orbital must contain two electrons—the lone pair hence sp hybridisation will give four tetrahedral orbitals, one containing this lone pair. Oxygen similarly hybridised will have two orbitals occupied by lone pairs, and fluorine, three. Hence the hydrides of the elements from carbon to fluorine have the structures... [Pg.57]

Both boron and aluminium chlorides can be prepared by the direct combination of the elements. Boron trichloride can also be prepared by passing chlorine gas over a strongly heated mixture of boron trioxide and carbon. Like boron trifluoride, this is a covalent compound and a gas at ordinary temperature and pressure (boiling point 285 K). It reacts vigorously with water, the mechanism probably involving initial co-ordination of a water molecule (p, 152). and hydrochloric acid is obtained ... [Pg.154]

Boron nitride is chemically unreactive, and can be melted at 3000 K by heating under pressure. It is a covalent compound, but the lack of volatility is due to the formation of giant molecules as in graphite or diamond (p. 163). The bond B—N is isoelectronic with C—C. [Pg.156]

It is soluble in organic solvents (a characteristic of a covalent compound). but dissolves in water and can form hydrates (a characteristic of an ionic compound), hence the hydrated must be... [Pg.199]

Diselenium dichloride acts as a solvent for selenium. Similarly disulphur dichloride is a solvent for sulphur and also many other covalent compounds, such as iodine. S Clj attacks rubber in such a way that sulphur atoms are introduced into the polymer chains of the rubber, so hardening it. This product is known as vulcanised rubber. The structure of these dichlorides is given below ... [Pg.307]

Many of the reactions of halogens can be considered as either oxidation or displacement reactions the redox potentials (Table 11.2) give a clear indication of their relative oxidising power in aqueous solution. Fluorine, chlorine and bromine have the ability to displace hydrogen from hydrocarbons, but in addition each halogen is able to displace other elements which are less electronegative than itself. Thus fluorine can displace all the other halogens from both ionic and covalent compounds, for example... [Pg.325]

In its chemistry, cadmium exhibits exclusively the oxidation state + 2 in both ionic and covalent compounds. The hydroxide is soluble in acids to give cadmium(II) salts, and slightly soluble in concentrated alkali where hydroxocadmiates are probably formed it is therefore slightly amphoteric. It is also soluble in ammonia to give ammines, for example Of the halides, cadmium-... [Pg.434]

Aluminum hydroxide and aluminum chloride do not ionize appreciably in solution but behave in some respects as covalent compounds. The aluminum ion has a coordination number of six and in solution binds six molecules of water existing as [Al(H20)g]. On addition of a base, substitution of the hydroxyl ion for the water molecule proceeds until the normal hydroxide results and precipitation is observed. Dehydration is essentially complete at pH 7. [Pg.95]

RTIX2 derivatives are covalent compounds, generally soluble in organic solvents. The aryl and vinyl derivatives are more stable than the corresponding alkyl compounds. This type of compound has been postulated to be an intermediate in many organic synthetic reactions involving thaUium(III) species. [Pg.470]

Arsenic Halides. Arsenic forms a complete series of trihaUdes, but arsenic pentafluoride is the only well-known simple pentahaUde. AH of the arsenic haUdes, the physical properties of which are given in Table 2, are covalent compounds that hydrolyze in the presence of water. The trihaUdes form pyramidal molecules similar to the trivalent phosphoms analogues and may be prepared by direct combination of the elements. [Pg.333]


See other pages where Compounds covalent compounds is mentioned: [Pg.67]    [Pg.68]    [Pg.17]    [Pg.1064]    [Pg.67]    [Pg.68]    [Pg.17]    [Pg.1064]    [Pg.68]    [Pg.111]    [Pg.119]    [Pg.155]    [Pg.213]    [Pg.280]    [Pg.281]    [Pg.285]    [Pg.292]    [Pg.71]    [Pg.73]    [Pg.73]    [Pg.121]    [Pg.121]    [Pg.134]    [Pg.227]    [Pg.285]    [Pg.390]    [Pg.417]    [Pg.10]    [Pg.327]    [Pg.42]    [Pg.384]    [Pg.340]    [Pg.572]   
See also in sourсe #XX -- [ Pg.50 , Pg.50 , Pg.123 , Pg.123 ]

See also in sourсe #XX -- [ Pg.5 , Pg.50 , Pg.123 , Pg.123 ]

See also in sourсe #XX -- [ Pg.51 , Pg.51 , Pg.132 , Pg.133 ]




SEARCH



Covalent compounds

© 2024 chempedia.info