Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Composite materials reactions

One more application area is composite materials where one wants to investigate the 3D structure and/or reaction to external influences. Fig.3a shows a shadow image of a block of composite material. It consists of an epoxy matrix with glass fibers. The reconstructed cross-sections, shown in Fig.3b, clearly show the fiber displacement inside the matrix. The sample can be loaded in situ to investigate the reaction of matrix and fibers to external strain. Also absorption and transmission by liquids can be visualized directly in three-dimensions. This method has been applied to the study of oil absorption in plastic granules and water collection inside artificial plant grounds. [Pg.581]

Single-reaction-step processes have been studied. However, higher selectivity is possible by optimizing catalyst composition and reaction conditions for each of these two steps (40,41). This more efficient utilization of raw material has led to two separate oxidation stages in all commercial faciUties. A two-step continuous process without isolation of the intermediate acrolein was first described by the Toyo Soda Company (42). A mixture of propylene, air, and steam is converted to acrolein in the first reactor. The effluent from the first reactor is then passed directiy to the second reactor where the acrolein is oxidized to acryUc acid. The products are absorbed in water to give about 30—60% aqueous acryUc acid in about 80—85% yield based on propylene. [Pg.152]

The soHds used as catalysts are typicady robust porous materials with high internal surface areas, typicady, hundreds of square meters per gram. Reaction occurs on the internal catalyst surface. The typical soHd catalyst used ia iadustry is a composite material with aumerous components and a complex stmcture. [Pg.160]

Sohd rocket propellants represent a very special case of a particulate composite ia which inorganic propellant particles, about 75% by volume, are bound ia an organic matrix such as polyurethane. An essential requirement is that the composite be uniform to promote a steady burning reaction (1). Further examples of particulate composites are those with metal matrices and iaclude cermets, which consist of ceramic particles ia a metal matrix, and dispersion hardened alloys, ia which the particles may be metal oxides or intermetallic compounds with smaller diameters and lower volume fractions than those ia cermets (1). The general nature of particulate reinforcement is such that the resulting composite material is macroscopicaHy isotropic. [Pg.4]

Catalysts vary both in terms of compositional material and physical stmcture (18). The catalyst basically consists of the catalyst itself, which is a finely divided metal (14,17,19) a high surface area carrier and a support stmcture (see Catalysts, supported). Three types of conventional metal catalysts are used for oxidation reactions single- or mixed-metal oxides, noble (precious) metals, or a combination of the two (19). [Pg.502]

Recently, interesting composite materials incorporating polymeric materials into the sol-gel glasses have been reported by Wilkes and his co-workers [9]. These materials are named ceramers . The properties of ceramers strongly depend on the reaction conditions, i.e., acidity, water content, reaction temperature, the amount of organic polymer, the molecular weight of polymer, solvent, and so on. [Pg.15]

The final properties depend not only on unstaturated polyester structure but also on a number of other parameters, such as the nature and proportion of unsaturated comonomer, the nature of the initiator, and the experimental conditions of the crosslinking reaction. Moreover, since polyester resins are mainly used as matrices for composite materials, the nature and amount of inorganic fillers and of reinforcing fibers are also of considerable importance. These aspects have been discussed in many reviews and book chapters and are beyond the scope of this chapter.7-9... [Pg.59]

The second problem relates to the role that interfaces play in mediating chemical reactions in the synthesis of composite materials. This problem has three parts, which are illustrated here for polymeric composites. [Pg.85]

Faradaic yields and the composition of reaction products are influenced mainly by the nature of the cathode material. Metallic electrodes used in aqueous solutions can be classified into four groups according to the nature of the principal reaction product ... [Pg.292]

Zeolites have ordered micropores smaller than 2nm in diameter and are widely used as catalysts and supports in many practical reactions. Some zeolites have solid acidity and show shape-selectivity, which gives crucial effects in the processes of oil refining and petrochemistry. Metal nanoclusters and complexes can be synthesized in zeolites by the ship-in-a-bottle technique (Figure 1) [1,2], and the composite materials have also been applied to catalytic reactions. However, the decline of catalytic activity was often observed due to the diffusion-limitation of substrates or products in the micropores of zeolites. To overcome this drawback, newly developed mesoporous silicas such as FSM-16 [3,4], MCM-41 [5], and SBA-15 [6] have been used as catalyst supports, because they have large pores (2-10 nm) and high surface area (500-1000 m g ) [7,8]. The internal surface of the channels accounts for more than 90% of the surface area of mesoporous silicas. With the help of the new incredible materials, template synthesis of metal nanoclusters inside mesoporous channels is achieved and the nanoclusters give stupendous performances in various applications [9]. In this chapter, nanoclusters include nanoparticles and nanowires, and we focus on the synthesis and catalytic application of noble-metal nanoclusters in mesoporous silicas. [Pg.383]

An example illustrating the calculation of stream composition from reaction equilibria, and also an example of a combined heat and material balance. [Pg.144]

The presence of zinc with bidentate nitrogen donor ligands in the formation of novel composite materials by hydrothermal reactions has been studied. A zinc-containing one-dimensional material, [Zn(phenanthroline)Mo04] was isolated from molybdate, and from vanadium oxide in the presence of zinc 2,2 -bipyridine [Zn(2,2,-bipyridine)2V40i2] was obtained.212,213... [Pg.1162]

However, other polymer composite materials also popular in solid-phase synthesis, such as polyethylene or polypropylene tea bags , lanterns, crowns, or plugs, are generally less suitable for high-temperature reactions (>160 °C). Therefore, micro-wave irradiation is typically not a very suitable tool to speed up reactions that utilize these materials as either a solid support or as containment for the solid support. [Pg.295]

An interesting variation on sulfated metal oxide type catalysts was presented by Sun et al. (198), who impregnated a dealuminated zeolite BEA with titanium and iron salts and subsequently sulfated the material. The samples exhibited a better time-on-stream behavior in the isobutane/1-butene alkylation (the reaction temperature was not given) than H-BEA and a mixture of sulfated zirconia and H-BEA. The product distribution was also better for the sulfated metal oxide-impregnated BEA samples. These results were explained by the higher concentration of strong Brpnsted acid sites of the composite materials than in H-BEA. [Pg.290]

The polymer resulting from oxidation of 3,5-dimethyl aniline with palladium was also studied by transmission electron microscopy (Mallick et al. 2005). As it turned out, the polymer was formed in nanofibers. During oxidative polymerization, palladium ions were reduced and formed palladium metal. The generated metal was uniformly dispersed between the polymer nanofibers as nanoparticles of 2 mm size. So, Mallick et al. (2005) achieved a polymer- metal intimate composite material. This work should be juxtaposed to an observation by Newman and Blanchard (2006) that reaction between 4-aminophenol and hydrogen tetrachloroaurate leads to polyaniline (bearing hydroxyl groups) and metallic gold as nanoparticles. Such metal nanoparticles can well be of importance in the field of sensors, catalysis, and electronics with improved performance. [Pg.241]

Among the surface-modified CNTs materials, a bulk-modified CNT paste (CNTP) has also been reported [126]. The new composite electrode combined the ability of CNTs to promote adsorption and electron-transfer reactions with the attractive properties of the composite materials. The CNTP was prepared by mixing MWCNTs powder (diameter 20-50 nm, length 1-5 jim) and mineral oil in a 60 30 ratio. The oxidation pretreatment [performed in ABS (pH 5.0) for 20 s at 1.30 V, vs Ag/AgCl] proved to be critical in the state of the CNTP surface. Pretreatments improved the adsorption and electrooxidation of both DNA and DNA bases, probably due to the increase in the density of oxygenated groups. [Pg.32]

The TSCA Inventory provides an overall picmre of the organic, inorganic, polymers, and UVCB (chemical substances of Unknown, or Variable Composition, Complex Reaction Products, and Biological Materials) chemicals produced, processed, or imported for commercial purposes in the United States. The Inventory is not a list of chemicals based on toxic or hazardous characteristics, since toxicity/hazard is not a criterion for inclusion in the list. The Inventory includes chemical substances of any commercial use in the United States since 1979 under the Environmental Protection Act, and is prepared by the US-EPA. The current TSCA Inventory contains approximately 81,600 chemicals. Currently, OPPT is focusing on a subset of approximately 3,000 HPV... [Pg.23]

Industrial storage vessels, pipes, reaction vessels, and pumps are now made from composite materials. They offer necessary resistance to corrosion, acids and bases, oils and gases, salt solutions, and the necessary strength and ease of fabrication to allow their continued adoption as a major industrial building material. [Pg.245]


See other pages where Composite materials reactions is mentioned: [Pg.385]    [Pg.130]    [Pg.136]    [Pg.403]    [Pg.251]    [Pg.351]    [Pg.495]    [Pg.278]    [Pg.9]    [Pg.9]    [Pg.453]    [Pg.293]    [Pg.818]    [Pg.826]    [Pg.4]    [Pg.947]    [Pg.88]    [Pg.188]    [Pg.261]    [Pg.36]    [Pg.371]    [Pg.18]    [Pg.76]    [Pg.65]    [Pg.358]    [Pg.220]    [Pg.167]    [Pg.78]    [Pg.87]    [Pg.313]    [Pg.198]    [Pg.289]    [Pg.506]   
See also in sourсe #XX -- [ Pg.4 , Pg.72 ]




SEARCH



Composite reaction

Composition reaction

How to Measure Surface Reactions of Cathode Materials and Relevant Composite Electrodes

© 2024 chempedia.info