Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complexes, aqueous inner-sphere

The development of more benign alternatives to cyanide for gold-leaching (see Section 9.17.3.1) such as thiourea, thiocyanate, or thiosulfate, which form stable complexes in water has prompted research to identify suitable solvent extractants from these media. Cyanex 301, 302, 272, Ionquest 801, LIX 26, MEHPA, DEHPA, Alamine 300 (Table 5) have been evaluated as extractants for gold or silver from acidic thiourea solutions.347 Whilst the efficacy of Cyanex 301 and 302 was unaffected by the presence of thiourea in the aqueous feed, the loading of the other extractants is severely depressed. Formation of solvated complexes of gold and of an inner-sphere complex of silver has been proposed.347... [Pg.792]

The Gd-H distance, /-GdH, which enters at the inverse sixth power into the expression of inner-sphere relaxivity, is a difficult parameter to obtain experimentally. It is generally estimated on the basis of Gd-coordinated water oxygen distances, determined by solid-state X-ray analysis. Solid-state distances are good estimates of the aqueous solution state, as was experimentally proven by an X-ray absorption fine-structure study on [Gd(D0TA)(H20)] and [Gd(DTPA)(H20)]2, which gave identical values for the Gd-0 distances for both complexes in solid and solution states.20... [Pg.847]

The nitric oxide reduction of Cu(dmp)2(H20)2+ in aqueous media gives a Cu(II)-NO complex via an inner-sphere mechanism [216] (dmp = 2,9-dimethyl-l,10-phen-... [Pg.121]

The effect of ligands on the character and degree of the inner-sphere reorganization during electroreduction of aqua-, aquahydroxy-, hydroxy-, and ethylene-diamine tetraacetic acid (EDTA) complexes of Zn(II) [95] and electrochemical process of Zn(II) complexed by different ligands - glycinate [96], ethanol amine [97], azinyl methyl ketoximes [98], aspartame [99], glutathione [100, 101] and several cephalosporin antibiotics [102] -were studied at mercury electrodes in aqueous solutions. [Pg.736]

This account is concerned with the rate and mechanism of the important group of reactions involving metal complex formation. Since the bulk of the studies have been performed in aqueous solution, the reaction will generally refer, specifically, to the replacement of water in the coordination sphere of the metal ion, usually octahedral, by another ligand. The participation of outer sphere complexes (ion pair formation) as intermediates in the formation of inner sphere complexes has been considered for some time (122). Thermodynamic, and kinetic studies of the slowly reacting cobalt(III) and chromium(III) complexes (45, 122) indicate active participation of outer sphere complexes. However, the role of outer sphere complexes in the reactions of labile metal complexes and their general importance in complex formation (33, 34, 41, 111) had to await modern techniques for the study of very rapid reactions. Little evidence has appeared so far for direct participation of the... [Pg.54]

Macroscopic experiments allow determination of the capacitances, potentials, and binding constants by fitting titration data to a particular model of the surface complexation reaction [105,106,110-121] however, this approach does not allow direct microscopic determination of the inter-layer spacing or the dielectric constant in the inter-layer region. While discrimination between inner-sphere and outer-sphere sorption complexes may be presumed from macroscopic experiments [122,123], direct determination of the structure and nature of surface complexes and the structure of the diffuse layer is not possible by these methods alone [40,124]. Nor is it clear that ideas from the chemistry of isolated species in solution (e.g., outer-vs. inner-sphere complexes) are directly transferable to the surface layer or if additional short- to mid-range structural ordering is important. Instead, in situ (in the presence of bulk water) molecular-scale probes such as X-ray absorption fine structure spectroscopy (XAFS) and X-ray standing wave (XSW) methods are needed to provide this information (see Section 3.4). To date, however, there have been very few molecular-scale experimental studies of the EDL at the metal oxide-aqueous solution interface (see, e.g., [125,126]). [Pg.474]

The pHPZC of ferric hydroxide surfaces is about 8 [127], so aqueous Pb2+ should be electrostatically repelled from these surfaces at pH values less than 8. However, as seen in Figure 7.6(a), the Pb2+ present in this aqueous solution is sorbed essentially completely to ferric hydroxide surfaces at pH 6. This behavior suggests that Pb2+ forms direct chemical bonds to these surfaces in order to overcome the repulsive electrostatic forces below the pHpzc of ferric hydroxide. This conclusion based on macroscopic uptake data has been confirmed by direct spectroscopic observation using X-ray absorption fine structure (XAFS) spectroscopy under in situ conditions (i.e., with aqueous solution in contact with a-FeOOH surfaces at ambient temperature and pressure) [133,134]. These studies showed that the aquated Pb(II) ion forms dominantly inner-sphere, bidentate complexes on a-FeOOH surfaces. [Pg.478]

In a parallel study, Co(II)aq was found to form dominantly inner-sphere complexes on both surfaces of a-Al203 [156]. This difference in reactivity between the (0001) and (1-102) surfaces with respect to aqueous Pb(II) and Co(II) was explained by... [Pg.485]

The superoxo-containing species [(NC)6Co(/u.-02)Co(CN5]5 can be reduced with thiols such as 2-aminoethanethiol or L-cysteine (175), and the reduction reaction is catalyzed by copper(II) ions in aqueous solution. When copper(II) is present, the role of the thiol is to reduce cop-per(II) to copper(I), which then reacts with the superoxo species through an inner-sphere mechanism. Conversely, when the superoxo complex [(H3N)5Co(/x-02)Co(NH3)5]5+ is reduced with thiol (176), the reaction follows an outer-sphere mechanism, as would be expected. Ascorbic acid also reduces both complexes (177), but only the reduction of the cyano-containing complex exhibits copper(II) catalysis. [Pg.313]


See other pages where Complexes, aqueous inner-sphere is mentioned: [Pg.246]    [Pg.246]    [Pg.11]    [Pg.39]    [Pg.50]    [Pg.91]    [Pg.170]    [Pg.168]    [Pg.27]    [Pg.267]    [Pg.486]    [Pg.486]    [Pg.915]    [Pg.132]    [Pg.940]    [Pg.70]    [Pg.87]    [Pg.4]    [Pg.222]    [Pg.145]    [Pg.9]    [Pg.223]    [Pg.225]    [Pg.171]    [Pg.403]    [Pg.697]    [Pg.702]    [Pg.91]    [Pg.93]    [Pg.567]    [Pg.267]    [Pg.1027]    [Pg.549]    [Pg.550]    [Pg.550]    [Pg.644]    [Pg.472]    [Pg.485]    [Pg.487]    [Pg.488]    [Pg.841]    [Pg.846]   
See also in sourсe #XX -- [ Pg.84 , Pg.85 , Pg.86 , Pg.87 ]




SEARCH



Aqueous complexants

Aqueous complexation

Aqueous complexes

Complex inner-sphere complexes

Inner sphere

Inner-sphere complex

© 2024 chempedia.info