Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Combination of atoms

B3.1.5.2 THE LINEAR COMBINATIONS OF ATOMIC ORBITALS TO FORM MOLECULAR ORBITALS EXPANSION OF THE SPIN ORBITALS... [Pg.2169]

The Universal Force Field, UFF, is one of the so-called whole periodic table force fields. It was developed by A. Rappe, W Goddard III, and others. It is a set of simple functional forms and parameters used to model the structure, movement, and interaction of molecules containing any combination of elements in the periodic table. The parameters are defined empirically or by combining atomic parameters based on certain rules. Force constants and geometry parameters depend on hybridization considerations rather than individual values for every combination of atoms in a bond, angle, or dihedral. The equilibrium bond lengths were derived from a combination of atomic radii. The parameters [22, 23], including metal ions [24], were published in several papers. [Pg.350]

HMO theory is named after its developer, Erich Huckel (1896-1980), who published his theory in 1930 [9] partly in order to explain the unusual stability of benzene and other aromatic compounds. Given that digital computers had not yet been invented and that all Hiickel s calculations had to be done by hand, HMO theory necessarily includes many approximations. The first is that only the jr-molecular orbitals of the molecule are considered. This implies that the entire molecular structure is planar (because then a plane of symmetry separates the r-orbitals, which are antisymmetric with respect to this plane, from all others). It also means that only one atomic orbital must be considered for each atom in the r-system (the p-orbital that is antisymmetric with respect to the plane of the molecule) and none at all for atoms (such as hydrogen) that are not involved in the r-system. Huckel then used the technique known as linear combination of atomic orbitals (LCAO) to build these atomic orbitals up into molecular orbitals. This is illustrated in Figure 7-18 for ethylene. [Pg.376]

For each combination of atoms i.j, k, and I, c is defined by Eq. (29), where X , y,. and Zj are the coordinates of atom j in Cartesian space defined in such a way that atom i is at position (0, 0, 0), atomj lies on the positive side of the x-axis, and atom k lies on the xy-plaiic and has a positive y-coordinate. On the right-hand side of Eq. (29), the numerator represents the volume of a rectangular prism with edges % , y ., and Zi, while the denominator is proportional to the surface of the same solid. If X . y ., or 2 has a very small absolute value, the set of four atoms is deviating only slightly from an achiral situation. This is reflected in c, which would then take a small absolute value the value of c is conformation-dependent because it is a function of the 3D atomic coordinates. [Pg.424]

ITyperChem uses the Linear Combination of Atomic Orhilals-Molecular Orbital (LCAO-MO) approximation for all of itsah initio sem i-empirical melh ods. If rg, represen is a molecular orbital and... [Pg.42]

To this pom t, th e basic approxmi alien is th at th e total wave I lnic-tion IS a single Slater determinant and the resultant expression of the molecular orbitals is a linear combination of atomic orbital basis functions (MO-LCAO). In other words, an ah miiio calculation can be initiated once a basis for the LCAO is chosen. Mathematically, any set of functions can be a basis for an ah mitio calculation. However, there are two main things to be considered m the choice of the basis. First one desires to use the most efficient and accurate functions possible, so that the expansion (equation (49) on page 222). will require the few esl possible term s for an accurate representation of a molecular orbital. The second one is the speed of tW O-electron integral calculation. [Pg.252]

In our treatment of molecular systems we first show how to determine the energy for a given iva efunction, and then demonstrate how to calculate the wavefunction for a specific nuclear geometry. In the most popular kind of quantum mechanical calculations performed on molecules each molecular spin orbital is expressed as a linear combination of atomic orhilals (the LCAO approach ). Thus each molecular orbital can be written as a summation of the following form ... [Pg.61]

Linear Combination of Atomic Orbitals (LCAO) in Hartree-Fock Theory... [Pg.76]

Tie first consideration is that the total wavefunction and the molecular properties calculated rom it should be the same when a transformed basis set is used. We have already encoun-ered this requirement in our discussion of the transformation of the Roothaan-Hall quations to an orthogonal set. To reiterate suppose a molecular orbital is written as a inear combination of atomic orbitals ... [Pg.108]

Highest occupied molecular orbital Intermediate neglect of differential overlap Linear combination of atomic orbitals Local density approximation Local spin density functional theory Lowest unoccupied molecular orbital Many-body perturbation theory Modified INDO version 3 Modified neglect of diatomic overlap Molecular orbital Moller-Plesset... [Pg.124]

To solve the Kohn-Sham equations a number of different approaches and strategies have been proposed. One important way in which these can differ is in the choice of basis set for expanding the Kohn-Sham orbitals. In most (but not all) DPT programs for calculating the properties of molecular systems (rather than for solid-state materials) the Kohn-Sham orbitals are expressed as a linear combination of atomic-centred basis functions ... [Pg.151]

Fig. 3.13 Some of the possible combinations of atomic Is orbitals for a 2D square lattice corresponding to different values ofkj and ky. A shaded circle indicates a positive coefficient an open circle corresponds to a negative coefficient. Fig. 3.13 Some of the possible combinations of atomic Is orbitals for a 2D square lattice corresponding to different values ofkj and ky. A shaded circle indicates a positive coefficient an open circle corresponds to a negative coefficient.
Application of the variational self-consistent field method to the Haitiee-Fock equations with a linear combination of atomic orbitals leads to the Roothaan-Hall equation set published contemporaneously and independently by Roothaan and Hall in 1951. For a minimal basis set, there are as many matr ix elements as there are atoms, but there may be many more elements if the basis set is not minimal. [Pg.278]

In the case of, the energy is wrong because the molecular orbital is not a linear combination of atomic orbitals, it is approximated by a linear combination of atomic orbitals. Use of scaled atomic orbitals... [Pg.306]

It is recommended that the reader become familiar with the point-group symmetry tools developed in Appendix E before proceeding with this section. In particular, it is important to know how to label atomic orbitals as well as the various hybrids that can be formed from them according to the irreducible representations of the molecule s point group and how to construct symmetry adapted combinations of atomic, hybrid, and molecular orbitals using projection operator methods. If additional material on group theory is needed. Cotton s book on this subject is very good and provides many excellent chemical applications. [Pg.149]

The second approximation in HF calculations is due to the fact that the wave function must be described by some mathematical function, which is known exactly for only a few one-electron systems. The functions used most often are linear combinations of Gaussian-type orbitals exp(—nr ), abbreviated GTO. The wave function is formed from linear combinations of atomic orbitals or, stated more correctly, from linear combinations of basis functions. Because of this approximation, most HF calculations give a computed energy greater than the Hartree-Fock limit. The exact set of basis functions used is often specified by an abbreviation, such as STO—3G or 6—311++g. Basis sets are discussed further in Chapters 10 and 28. [Pg.19]

LCAO (linear combination of atomic orbitals) refers to construction of a wave function from atomic basis functions LDA (local density approximation) approximation used in some of the more approximate DFT methods... [Pg.365]

The molecular orbital approach to chemical bonding rests on the notion that as elec trons m atoms occupy atomic orbitals electrons m molecules occupy molecular orbitals Just as our first task m writing the electron configuration of an atom is to identify the atomic orbitals that are available to it so too must we first describe the orbitals avail able to a molecule In the molecular orbital method this is done by representing molec ular orbitals as combinations of atomic orbitals the linear combination of atomic orbitals molecular orbital (LCAO MO) method... [Pg.61]

You can interpret results, including dipole moments and atomic charges, using the simple concepts and familiar vocabulary of the Linear Combination of Atomic Orbitals (LCAO)-molecular orbital (MO) theory. [Pg.33]

The quantum mechanics methods in HyperChem differ in how they approximate the Schrodinger equation and how they compute potential energy. The ab initio method expands molecular orbitals into a linear combination of atomic orbitals (LCAO) and does not introduce any further approximation. [Pg.34]

Configuration Interaction (or electron correlation) adds to the single determinant of the Hartree-Fock wave function a linear combination of determinants that play the role of atomic orbitals. This is similar to constructing a molecular orbital as a linear combination of atomic orbitals. Like the LCAO approximation. Cl calculations determine the weighting of each determinant to produce the lowest energy ground state (see SCFTechnique on page 43). [Pg.38]

To compute molecular orbitals, you must give them mathematical form. The usual approach is to expand them as a linear combination of known functions, such as the atomic orbitals of the constituent atoms of the molecular system. If the atomic orbitals, (Is, 2s, 2px, 2py, 2pz, etc.) are denoted as then this equation describes the molecular orbitals as linear combination of atomic orbitals (MO-LCAO) ... [Pg.221]

Substitutive Nomenclature. The first step is to determine the kind of characteristic (functional) group for use as the principal group of the parent compound. A characteristic group is a recognized combination of atoms that confers characteristic chemical properties on the molecule in which it occurs. Carbon-to-carbon unsaturation and heteroatoms in rings are considered nonfunctional for nomenclature purposes. [Pg.17]


See other pages where Combination of atoms is mentioned: [Pg.50]    [Pg.33]    [Pg.2202]    [Pg.2215]    [Pg.300]    [Pg.421]    [Pg.33]    [Pg.38]    [Pg.120]    [Pg.164]    [Pg.259]    [Pg.183]    [Pg.203]    [Pg.296]    [Pg.16]    [Pg.268]    [Pg.269]    [Pg.229]   
See also in sourсe #XX -- [ Pg.267 ]




SEARCH



Atom Abstraction and Combination of the Resulting Radical with a Second Metal

Atomic combinations

Atoms Combined

Atoms, combination

Combination of Atomic Orbitals (LCAO)

Combination reactions of ions and halogen atoms

LCAO (linear combination of atomic

LCAO (linear combination of atomic orbitals

LCAO-MO (linear combination of atomic

LCAO-MO (linear combination of atomic orbitals-molecular orbital

LCAOs (linear combinations of atomic

Linear Combination of Atomic Orbitals Approximation

Linear Combination of Atomic Orbitals theory

Linear Combination of Atomic OrbitalsMolecular Orbital

Linear combination of atomic

Linear combination of atomic orbitals , molecular orbital

Linear combination of atomic orbitals LCAO model)

Linear combination of atomic orbitals LCAO) approximation

Linear combination of atomic orbitals LCAO) method

Linear combination of atomic orbitals LCAO-MO)

Linear combination of atomic orbitals approach

Linear combination of atomic orbitals coefficients

Linear combination of atomic orbitals method

Linear combination of atomic orbitals. See

Linear combination of atomic orbital—molecular

Linear combinations of atomic orbital

Linear combinations of atomic orbitals

Linear combinations of atomic orbitals LCAOs)

Linear combinations of atomic orbitals-molecular

Linear combinations of the atomic

Linear combinations of the atomic orbitals

Linear-combination-of-atomic-orbitals LCAO) approach

NUCLEAR FUSION IS THE COMBINING OF ATOMIC NUCLEI

© 2024 chempedia.info