Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular collision dynamics

The high relative velocities following impact of a cluster on a surface suggests that such dissociation processes can readily take place when a diatomic molecule embedded inside the cluster is activated by a collision. Molecular dynamics simulations show that beyond a threshold, the yield of dissociation of halogen molecules solvated in a rare gas cluster is a rapidly increasing function of the collision velocity and can reach 100%, see Fig. 6. This, unlike the surface impact induced dissociation of unclustered, cold, halogen molecules where the yield reaches a plateau of below 40%. ° ... [Pg.29]

Two simulation methods—Monte Carlo and molecular dynamics—allow calculation of the density profile and pressure difference of Eq. III-44 across the vapor-liquid interface [64, 65]. In the former method, the initial system consists of N molecules in assumed positions. An intermolecule potential function is chosen, such as the Lennard-Jones potential, and the positions are randomly varied until the energy of the system is at a minimum. The resulting configuration is taken to be the equilibrium one. In the molecular dynamics approach, the N molecules are given initial positions and velocities and the equations of motion are solved to follow the ensuing collisions until the set shows constant time-average thermodynamic properties. Both methods are computer intensive yet widely used. [Pg.63]

If we wish to know the number of (VpV)-collisions that actually take place in this small time interval, we need to know exactly where each particle is located and then follow the motion of all the particles from time tto time t+ bt. In fact, this is what is done in computer simulated molecular dynamics. We wish to avoid this exact specification of the particle trajectories, and instead carry out a plausible argument for the computation of r To do this, Boltzmann made the following assumption, called the Stosszahlansatz, which we encountered already in the calculation of the mean free path ... [Pg.678]

The scope of this section restricts the discussion. One omitted topic is the collision and interaction of molecules with surfaces (see [20, 21] and section A3.9). This topic coimects quantum molecular dynamics in gas and condensed phases. Depending on the time scales of the interaction of a molecule witli a surface, the... [Pg.2291]

A comer-stone of a large portion of quantum molecular dynamics is the use of a single electronic surface. Since electrons are much lighter than nuclei, they typically adjust their wavefiinction to follow the nuclei [26]. Specifically, if a collision is started in which the electrons are in their ground state, they typically remain in the ground state. An exception is non-adiabatic processes, which are discussed later in this section. [Pg.2292]

Tully, J. C. Nonadiabatic Processes in Molecular Collisions. In Dynamics of Molecular Collisions, Part B (W.H. Miller, ed.). Plenum, New York (1976) Zener, C. Non-adiabatic crossing of energy levels, Proc. R. Soc. London, Ser. A 137 (1932) 696-702... [Pg.395]

The first molecular dynamics simulation of a condensed phase system was performed by Alder and Wainwright in 1957 using a hard-sphere model [Alder and Wainwright 1957]. In this model, the spheres move at constant velocity in straight lines between collisions. All collisions are perfectly elastic and occur when the separation between the centres of... [Pg.367]

The interaction of a molecular species with electromagnetic fields can cause transitions to occur among the available molecular energy levels (electronic, vibrational, rotational, and nuclear spin). Collisions among molecular species likewise can cause transitions to occur. Time-dependent perturbation theory and the methods of molecular dynamics can be employed to treat such transitions. [Pg.375]

It was demonstrated in Chapter 6 that impact theory is able to describe qualitatively the main features of the drastic transformations of gas-phase spectra into liquid ones for the case of a linear molecule. The corresponding NMR projection of spectral collapse is also reproduced qualitatively. Does this reflect any pronounced physical mechanism of molecular dynamics In particular, can molecular rotation in dense media be thought of as free during short time intervals, interrupted by much shorter collisions ... [Pg.224]

Einwohner T., Alder B. J. Molecular dynamics. VI. Free-path distributions and collision rates for hard-sphere and square-well molecules, J. Chem. Phys. 49, 1458-73 (1968). [Pg.282]

Once the Fock operators have been constructed from a set of MSOs, this matrix equation is linear in its unknowns. Its coefficients are dependent on time in a way determined by the forces driving the electrons. These forces are the nuclear Coulomb potentials in molecular collisions or dynamics, but they could also be weak external fields. [Pg.331]

Due to particles extrusion, crystal lattice deformation expands to the adjacent area, though the deformation strength reduces gradually (Figs. 10(a)-10(other hand, after impacting, the particle may retain to plow the surface for a short distance to exhaust the kinetic energy of the particle. As a result, parts of the free atoms break apart from the substrate and pile up as atom clusters before the particle. The observation is consistent with results of molecular dynamics simulation of the nanometric cutting of silicon [15] and collision of the nanoparticle with the solid surface [16]. [Pg.239]

Molecular dynamics simulation (MDS) is a powerful tool for the processing mechanism study of silicon surface fabrication. When a particle impacts with a solid surface, what will happen Depending on the interaction between cluster and surface, behaviors of the cluster fall into several categories including implantation [20,21], deposition [22,23], repulsion [24], and emission [25]. Owing to limitations of computer time, the cluster that can be simulated has a diameter of only a few nanometres with a small cohesive energy, which induces the cluster to fragment after collision. [Pg.239]

The soft-core model may be more convenient in molecular dynamics simulation, since a continuously differentiable potential is available to calculate the force. In the case of a hardcore potential, collision times of all atom pairs have to be monitored and used to control the time step. [Pg.629]

We begin with a description of multiparticle collision dynamics and discuss its important properties. We show how it can be combined with full molecular dynamics (MD) to construct a hybrid MPC-MD method that can be used to... [Pg.91]

Multiparticle collision dynamics can be combined with full molecular dynamics in order to describe the behavior of solute molecules in solution. Such hybrid MPC-MD schemes are especially useful for treating polymer and colloid dynamics since they incorporate hydrodynamic interactions. They are also useful for describing reactive systems where diffusive coupling among solute species is important. [Pg.111]

Hybrid MPC-MD schemes may be constructed where the mesoscopic dynamics of the bath is coupled to the molecular dynamics of solute species without introducing explicit solute-bath intermolecular forces. In such a hybrid scheme, between multiparticle collision events at times x, solute particles propagate by Newton s equations of motion in the absence of solvent forces. In order to couple solute and bath particles, the solute particles are included in the multiparticle collision step [40]. The above equations describe the dynamics provided the interaction potential is replaced by Vj(rJVs) and interactions between solute and bath particles are neglected. This type of hybrid MD-MPC dynamics also satisfies the conservation laws and preserves phase space volumes. Since bath particles can penetrate solute particles, specific structural solute-bath effects cannot be treated by this rule. However, simulations may be more efficient since the solute-solvent forces do not have to be computed. [Pg.112]

Most descriptions of the dynamics of molecular or particle motion in solution require a knowledge of the frictional properties of the system. This is especially true for polymer solutions, colloidal suspensions, molecular transport processes, and biomolecular conformational changes. Particle friction also plays an important role in the calculation of diffusion-influenced reaction rates, which will be discussed later. Solvent multiparticle collision dynamics, in conjunction with molecular dynamics of solute particles, provides a means to study such systems. In this section we show how the frictional properties and hydrodynamic interactions among solute or colloidal particles can be studied using hybrid MPC-MD schemes. [Pg.114]

Multiparticle collision dynamics describes the interactions in a many-body system in terms of effective collisions that occur at discrete time intervals. Although the dynamics is a simplified representation of real dynamics, it conserves mass, momentum, and energy and preserves phase space volumes. Consequently, it retains many of the basic characteristics of classical Newtonian dynamics. The statistical mechanical basis of multiparticle collision dynamics is well established. Starting with the specification of the dynamics and the collision model, one may verify its dynamical properties, derive macroscopic laws, and, perhaps most importantly, obtain expressions for the transport coefficients. These features distinguish MPC dynamics from a number of other mesoscopic schemes. In order to describe solute motion in solution, MPC dynamics may be combined with molecular dynamics to construct hybrid schemes that can be used to explore a variety of phenomena. The fact that hydrodynamic interactions are properly accounted for in hybrid MPC-MD dynamics makes it a useful tool for the investigation of polymer and colloid dynamics. Since it is a particle-based scheme it incorporates fluctuations so that the reactive and nonreactive dynamics in small systems where such effects are important can be studied. [Pg.139]

A. Malevanets and R. Kapral, Mesoscopic multi-particle collision model for fluid flow and molecular dynamics, in Novel Methods in Soft Matter Simulations, M. Karttunen, I. Vattulainen, and A. Lukkarinen (eds.), Springer-Verlag, Berlin, 2003, p. 113. [Pg.142]

Binary collision dynamics, reactive hybrid MPC-molecular dynamics,... [Pg.277]

Monte Carlo heat flow simulation, nonequilibrium molecular dynamics, 73-74, 77-81 multiparticle collision dynamics hydrodynamic equations, 105-107 macroscopic laws and transport coefficients, 102-104 single-particle friction and diffusion, 114-118... [Pg.281]

Monte Carlo heat flow simulation, 67-70 nonequilibrium molecular dynamics, 75-81 multiparticle collision dynamics ... [Pg.282]

To simulate the particle-particle collision, the hard-sphere model, which is based on the conservation law for linear momentum and angular momentum, is used. Two empirical parameters, a restitution coefficient of 0.9 and a friction coefficient of 0.3, are utilized in the simulation. In this study, collisions between spherical particles are assumed to be binary and quasi-instantaneous. The equations, which follow those of molecular dynamic simulation, are used to locate the minimum flight time of particles before any collision. Compared with the soft-sphere particle-particle collision model, the hard-sphere model accounts for the rotational particle motion in the collision dynamics calculation thus, only the translational motion equation is required to describe the fluid induced particle motion. In addition, the hard-sphere model also permits larger time steps in the calculation therefore, the simulation of a sequence of collisions can be more computationally effective. The details of this approach can be found in the literature (Hoomans et al., 1996 Crowe et al., 1998). [Pg.16]


See other pages where Molecular collision dynamics is mentioned: [Pg.281]    [Pg.283]    [Pg.20]    [Pg.281]    [Pg.283]    [Pg.20]    [Pg.902]    [Pg.18]    [Pg.319]    [Pg.406]    [Pg.468]    [Pg.469]    [Pg.18]    [Pg.18]    [Pg.204]    [Pg.318]    [Pg.319]    [Pg.239]    [Pg.265]    [Pg.7]    [Pg.394]    [Pg.70]    [Pg.91]    [Pg.281]    [Pg.283]    [Pg.717]    [Pg.214]   
See also in sourсe #XX -- [ Pg.239 ]




SEARCH



Collisions and Molecular Dynamics

Collisions dynamics

Electron nuclear dynamics , molecular systems, reactive collisions

Molecular Dynamics with Hard-Sphere Collisions

Molecular beams collision dynamics

Molecular collision

Molecular dynamics collision cascade

© 2024 chempedia.info