Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Collisional dipole

Thus the kinetic equation may be derived for operator (7.21), though it does not exist for an average dipole moment. Formally, the equation is quite identical to the homogeneous differential equation of the impact theory with the collisional operator (7.27). It is of importance that this equation holds for collisions of arbitrary strength, i.e. at any angle of the field reorientation. From Eq. (7.10) and Eq. (7.20) it is clear that the shape of the IR spectrum... [Pg.234]

Energy transfer, as described by Forster [78], requires a long range dipole-dipole interaction between the donor and the acceptor fluorophore. This energy transfer is possible at distances between 2 and 10 nm. Contrary to what happens in collisional quenching, there is no need for physical contact between the two molecules. [Pg.254]

Welsh suggested correctly that similar transitions take place even if the molecular pair is not bound. The energy of relative motion of the pair is a continuum. Its width is of the order of the thermal energy, Efree 3kT/2. Radiative transitions between free states occur (marked free-free in the figure) which are quite diffuse, reflecting the short lifetime of the supermolecule. In dense gases, such diffuse collision-induced transitions are often found at the various rotovibrational transition frequencies, or at sums or differences of these, even if these are dipole forbidden in the individual molecules. The dipole that interacts with the radiation field arises primarily by polarization of the collisional partner in the quadrupole field of one molecule the free-free and bound-bound transitions originate from the same basic induction mechanism. [Pg.9]

Spectroscopists have always known certain phenomena that are caused by collisions. A well-known example of such a process is the pressure broadening of allowed spectral lines. Pressure broadened lines are, however, not normally considered to be collision-induced, certainly not to that extent to which a specific line intensity may be understood in terms of an individual atomic or molecular dipole transition moment. The definition of collisional induction as we use it here implies a dipole component that arises from the interaction of two or more atoms or molecules, leading at high enough gas density to discernible spectral line intensities in excess of the sum of the absorption of the atoms/molecules of the complex. In other... [Pg.56]

It is of interest to compare the half-widths at half-intensity of the spectral functions of the three systems shown in Fig. 3.2. These amount to roughly 140, 80 and 50 cm-1 for He-Ar, Ne-Ar and Ar-Kr, respectively, which are enormous widths if compared to the widths of common Doppler profiles, etc. The observed widths reflect the short lifetimes of collisional complexes. From the theory of Fourier transforms we know that the product of lifetime, At, and bandwidth, A/, is of the order of unity, Eq. 1.5. The duration of the fly-by interaction is given roughly by the range of the induced dipole function, Eq. 4.30 (1/a = 0.73 a.u. for He-Ar), divided by the mean relative speed, Eq. 2.12. We obtain readily ... [Pg.61]

An important induced dipole component of pairs involving molecules is multipolar induction. Specifically, the lowest-order multipole consistent with the symmetry of H2 is the electric quadrupole. Each H2 molecule may be thought of as being surrounded by an electric field of quadrupolar symmetry that rotates with the molecule.-In that field, a collisional partner X is polarized, thus giving rise to an induced dipole moment which in turn is capable of emitting and absorbing light. For like pairs, molecule 1 will induce a dipole in molecule 2 and 2 will induce one in 1. In... [Pg.82]

A rotation of the H2 molecule through 180° creates an identical electric field. In other words, for every full rotation of a H2 molecule, the dipole induced in the collisional partner X oscillates twice through the full cycle. Quadrupole induced lines occur, therefore, at twice the (classical) rotation frequencies, or with selection rules J — J + 2, like rotational Raman lines of linear molecules. Orientational transitions (J — J AM 0) occur at zero frequency and make up the translational line. Besides multipole induction of the lowest-order multipole moments consistent with... [Pg.84]

If at least one of the interacting particles is a molecule, further induction mechanisms arise. Molecules are surrounded by an electric field which may be viewed as a superposition of multipole fields. A collisional partner will be polarized in the multipole field and thus give rise to induced dipole components. In the case of symmetric diatoms like H2 or N2, the lowest-order multipole is a quadrupole and asymptotically, for R - 00, the quadrupole-induced dipole may be written as [288, 289]... [Pg.145]

Here a designates the trace of the polarizability tensor of one molecule (l/47i o) times the factor of a represents the electric fieldstrength of the quadrupole moment q2. Other non-vanishing multipole moments, for example, octopoles (e.g., of tetrahedral molecules), hexadecapoles (of linear molecules), etc., will similarly interact with the trace or anisotropy of the polarizability of the collisional partner and give rise to further multipole-induced dipole components. [Pg.145]

Finally, dipoles may arise from collisional frame distortion . Polyatomic molecules like C02, CH4, SF6, C2H6.in their ground states are non-... [Pg.145]

While exchange- and dispersion-induced dipole components are of a quantum nature, the multipole-induced dipole components can be modeled by classical relationships, if the quantum effects are small. For many systems of practical interest, multipolar induction generates the dominant dipole components. The classical multipole induction approximation has been very successful, except for the weakly polarizable partners (e.g., He atoms) [193]. It models the dipole induced in the collisional partner by polarization in the molecular multipole fields. [Pg.152]

We note that even the unmixed molecular gases absorb infrared radiation by collisional induction, in contrast to the unmixed monatomic gases which do not. This is so because pairs of like atoms possess an inversion symmetry that is inconsistent with a dipole moment pairs of like molecules, on the other hand, may be found in various orientations and rotovibrational excitations that are consistent with a dipole moment of the complex. We will, therefore, consider in this Chapter mostly the unmixed molecular gases (without neglecting mixtures unduly). [Pg.279]

The anisotropy of the interaction couples the translational and rotational states of collisional systems. This in turn couples the various dipole components. Instead of computing for each set of expansion parameters X XiSL one general profile for all rotational components associated with that set, one now has a much more complex computational task to compute the induced absorption continua. Moreover, the energy level diagrams as well as the spectra of van der Waals dimers are much more complex when the anisotropy of the interaction is accounted for. [Pg.329]

Subsequently, a kinetic theory of intercollisional interference was developed (Lewis 1980 and 1985). The kinetic theory was based on the idea of pairwise additivity of intermolecular force and induced dipole moment. It traces the collisional history of an individual molecule of a highly diluted system. The traced molecule may be a vibrating molecule, surrounded by non-vibrating molecules, or else a dissimilar molecule of low concentration (gas mixtures). [Pg.350]

In the framework of the impact approximation of pressure broadening, the shape of an ordinary, allowed line is a Lorentzian. At low gas densities the profile would be sharp. With increasing pressure, the peak decreases linearly with density and the Lorentzian broadens in such a way that the area under the curve remains constant. This is more or less what we see in Fig. 3.36 at low enough density. Above a certain density, the l i(0) line shows an anomalous dispersion shape and finally turns upside down. The asymmetry of the profile increases with increasing density [258, 264, 345]. Besides the Ri(j) lines, we see of course also a purely collision-induced background, which arises from the other induced dipole components which do not interfere with the allowed lines its intensity varies as density squared in the low-density limit. In the Qi(j) lines, the intercollisional dip of absorption is clearly seen at low densities, it may be thought to arise from three-body collisional processes. The spectral moments and the integrated absorption coefficient thus show terms of a linear, quadratic and cubic density dependence,... [Pg.353]

Both photon-assisted collisions and collision-induced absorption deal with transitions which occur because a dipole moment is induced in a collisional pair. The induction proceeds, for example, via the polarization of B in the electric multipole field of A. A variety of photon-assisted collisions exist for example, the above mentioned LICET or pair absorption process, or the induction of a transition which is forbidden in the isolated atom [427], All of these photon-assisted collision processes are characterized by long-range transition dipoles which vary with separation, R, as R n with n — 3 or 4, depending on the symmetry of the states involved. Collision-induced spectra, on the other hand, frequently arise from quadrupole (n = 4), octopole (n = 5) and hexadecapole (n = 6) induction, as we have seen. At near range, a modification of the inverse power law due to electron exchange is often quite noticeable. The importance of such overlap terms has been demonstrated for the forbidden oxygen —> lD emission induced by collision with rare gases [206] and... [Pg.363]

Here, a. and a L are the polarizabilities of the diatom parallel and perpendicular to the internuclear separation, R12. The electrostatic theory accounts for the distortions of the local field by the proximity of a point dipole (the polarized collisional partner) and suggests that the anisotropy is given by ft Rn) 6intermolecular interactions). This is the so-called dipole-induced dipole (DID) model, which approximates the induced anisotropy of such diatoms often fairly well. It gives rise to pressure-induced depolarization of scattered light, and to depolarized, collision-induced Raman spectra in general. [Pg.367]

It is well known that the tetrahedral frame of the CH4 molecule is easily distorted. If the tetrahedral frame of CH4 were robust, the purely rotational infrared spectra of CH4 would not exist. However, even at temperatures as low as room temperature, the CH4 molecule features hundreds of very weak, dipole-allowed rotovibrational lines at frequencies from 42 to 208 cm-1, the so-called groundstate to groundstate (gs—>gs) transitions. Moreover, more than 1500 weak, dipole-allowed transitions exist within the polyad system v /v — 1/2/1, at frequencies from 14 to 500 cm-1 [42]. These allowed transitions arise from distortions of the tetrahedral frame by rotation and the internal dynamics of the CH4 molecule, due to the coupling of normal modes of the flexible CH4 frame. Collisional frame distortion should probably be associated with unresolved gs— gs and similar polyad bands. Some evidence of such collision-induced bands of CH4 in CH4-X complexes has been pointed out [39-41]. Besides these collision-induced bands that presumably are due to collisional frame distortion of CH4, fairly significant, unexplained collision-induced bands also exist that are shaped by rotovibrational transitions of the collisional partner X = H2, N2, or CH4, and by double transitions of the bimolecular CH4-X complex [39-41]. [Pg.378]


See other pages where Collisional dipole is mentioned: [Pg.806]    [Pg.2476]    [Pg.2478]    [Pg.2479]    [Pg.49]    [Pg.82]    [Pg.21]    [Pg.60]    [Pg.2]    [Pg.179]    [Pg.3]    [Pg.12]    [Pg.80]    [Pg.264]    [Pg.1]    [Pg.12]    [Pg.13]    [Pg.16]    [Pg.139]    [Pg.369]    [Pg.377]    [Pg.378]    [Pg.386]    [Pg.392]    [Pg.392]    [Pg.397]    [Pg.225]    [Pg.227]    [Pg.274]    [Pg.288]    [Pg.292]   
See also in sourсe #XX -- [ Pg.162 ]




SEARCH



Collisional

© 2024 chempedia.info