Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cohesive cluster

The size of the particles and their ability to interact with each other characterize the type of cluster as cohesionless or cohesive. A cohesionless cluster is formed from noninteracting particles or from large particles (> 1 mm), and its dispersion is determined only by the total deformation of the primary phase. In this case, the dispersion is achieved by peeling off particles from the surface of the cluster by tangential velocity components close to the particles. On the other hand, a cohesive cluster includes interacting particles or very small particles or particles dispersed in a medium other than the polymer matrix, and its dispersion depends on the applied stresses (or equivalently on the deformation rates). [Pg.181]

Figure Cl. 1.6. Minimum energy stmctures for neutral Si clusters ( = 12-20) calculated using density functional theory witli tire local density approximation. Cohesive energies per atom are indicated. Note tire two nearly degenerate stmctures of Si g. Ho K M, Shvartsburg A A, Pan B, Lu Z Y, Wang C Z, Wacher J G, Fye J L and Jarrold M F 1998 Nature 392 582, figure 2. Figure Cl. 1.6. Minimum energy stmctures for neutral Si clusters ( = 12-20) calculated using density functional theory witli tire local density approximation. Cohesive energies per atom are indicated. Note tire two nearly degenerate stmctures of Si g. Ho K M, Shvartsburg A A, Pan B, Lu Z Y, Wang C Z, Wacher J G, Fye J L and Jarrold M F 1998 Nature 392 582, figure 2.
Therefore, monolayers may consist of two different chemisorption modes ordered in different domains, simultaneously coexisting homogeneous clusters, each characterized by a different conformer in their unit cell. This may explain the observation of 2D Hquid in butane- and hexanethiolate monolayers on gold (278), where VDW interactions do not provide enough cohesive energy to allow for small domains to coexist as a 2D soHd. [Pg.542]

However, like the mp, bp and enthalpy of atomization, it also reflects the weaker cohesive forces in the metallic lattice since for Tc and Re, which have much stronger metallic bonding, the -t-2 state is of little importance and the occurrence of cluster compounds with M-M bonds is a dominant feature of rhenium(III) chemistry. The almost uniform slope of the plot for Tc presages the facile interconversion between oxidation states, observed for this element. [Pg.1044]

Molecular dynamics simulation (MDS) is a powerful tool for the processing mechanism study of silicon surface fabrication. When a particle impacts with a solid surface, what will happen Depending on the interaction between cluster and surface, behaviors of the cluster fall into several categories including implantation [20,21], deposition [22,23], repulsion [24], and emission [25]. Owing to limitations of computer time, the cluster that can be simulated has a diameter of only a few nanometres with a small cohesive energy, which induces the cluster to fragment after collision. [Pg.239]

Apparently, the cohesive energy of these clusters shows a very slow convergence with the size of the molecule. This should not be surprising, since the number of unsaturated valences "dangling bonds" per carbon atom is one in 1,1/2 in 2 and 1/3 in 3. [Pg.37]

Assuming an approximately constant cohesive energy per C-C bond, that trend is understandable. With clusters on the above general type, the number of carbon atoms is 6N, the number of dangling bonds is 6N, and the number of C-C bonds is 9N -3N. The energy per bond shows a smoother trend, the numbers being 71.0, 77.6 and 79.9 kcal/mol, respectively. Alternatively, the energies can be fitted to a two-parameter expression of the form... [Pg.37]

The cohesive energy per carbon atom in a poly-yne ring is only 99.1 kcal/mol, clearly lower than the value in Cc. Anticipating a long and complicated route of formation when starting from graphite, in does not seem likely that any of the larger clusters observed experimentally would have a linear or cyclic chain structure. [Pg.43]

Theory for the Size and Structural Dependendence of the Ionization and Cohesive Energy of Transtion Metal Clusters. [Pg.243]

When the attachment of the substrate to the precipitate to be formed is strong, the clusters tend to spread themselves out on the substrate and form thin surface islands. A special limiting case is the formation of a surface nucleus on a seed crystal of the same mineral (as in surface nucleation crystal growth). As the cohesive bonding within the cluster becomes stronger relative to the bonding between the cluster and the substrate, the cluster will tend to grow three-dimensionally (Steefel and Van Cappellen, 1990). [Pg.219]

On the practical side, we note that nature provides a number of extended systems like solid metals [29, 30], metal clusters [31], and semiconductors [30, 32]. These systems have much in common with the uniform electron gas, and their ground-state properties (lattice constants [29, 30, 32], bulk moduli [29, 30, 32], cohesive energies [29], surface energies [30, 31], etc.) are typically described much better by functionals (including even LSD) which have the right uniform density limit than by those that do not. There is no sharp boundary between quantum chemistry and condensed matter physics. A good density functional should describe all the continuous gradations between localized and delocalized electron densities, and all the combinations of both (such as a molecule bound to a metal surface a situation important for catalysis). [Pg.16]

A newly discovered, highly organized state of matter in which clusters of 20-30 component atoms are magnetically contained and adiabatically cooled to within 2-3 X 10 K of absolute zero. At this point, the motions of the contained atoms are overcome by very weak cohesive forces of the Bose-Einstein condensate. While of no apparent relevance to biochemical kinetics, the Bose-Einstein condensate represents one of the most perfect forms of self-assembly, inasmuch as aU atoms within the condensate share identical Schrodinger wave equations. [Pg.98]

Regardless of these short-ranged cohesive forces, the formation and stability of particle clusters in a fluidized bed appears to be a multistep process [27], Some shear (as in two particles grazing each other) may be needed to promote collisional cooling, but less than that perhaps in the dense emnlsion of a fluidized bed. Perhaps the lower particle concentration in a babble provides the environment where clnster stability is promoted for the smaller particles. Collisional stresses in the emnlsion may be too high and the cohesive forces may be too low to have long-lasting particle clusters. Indeed, the only evidence of particle clnsters in fluidized beds offered here is that the clusters are located near the bubbles. [Pg.168]


See other pages where Cohesive cluster is mentioned: [Pg.90]    [Pg.90]    [Pg.2394]    [Pg.143]    [Pg.156]    [Pg.145]    [Pg.804]    [Pg.76]    [Pg.19]    [Pg.24]    [Pg.25]    [Pg.403]    [Pg.213]    [Pg.83]    [Pg.511]    [Pg.354]    [Pg.141]    [Pg.202]    [Pg.35]    [Pg.36]    [Pg.229]    [Pg.235]    [Pg.2]    [Pg.233]    [Pg.320]    [Pg.167]    [Pg.169]    [Pg.413]    [Pg.185]    [Pg.13]    [Pg.63]    [Pg.69]    [Pg.69]    [Pg.65]    [Pg.71]   
See also in sourсe #XX -- [ Pg.181 ]




SEARCH



Cohesion

Cohesiveness

Cohesives

Cohesivity

© 2024 chempedia.info