Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox reaction coenzyme

Flavin Adenine Dinucleotide (FAD) (C27 H33 N9 O15P2) is a coenzyme that acts as a hydrogen acceptor in dehydrogenation reactions in an oxidized or reduced form. FAD is one of the primary cofactors in biological redox reactions. [Pg.507]

CODH/ACS is an extremely oxygen-sensitive protein that has been found in anaerobic microbes. It also is one of the three known nickel iron-sulfur proteins. Some authors would consider that there are only two, since the CODH and ACS activities are tightly linked in many organisms. However, there is strong evidence that the ACS and CODH activities are associated with different protein subunits and the reactions that the two enzymes catalyze are quite different. CODH catalyzes a redox reaction and ACS catalyzes the nonredox condensation of a methyl group, a carbonyl group, and an organic thiol (coenzyme A). [Pg.305]

A redox reaction is a special case of the equilibrium reaction of A + B in Equation 13.1 B is now a reducible group in a biomolecule with an EPR spectrum either in its oxidized or in its reduced state (or both), and A is now an electron or a pair of electrons, that is, reducing equivalents provided by a natural redox partner (a reductive substrate, a coenzyme such as NADH, a protein partner such as cytochrome c), or by a chemical reductant (dithionite), or even by a solid electrode ... [Pg.215]

The acceleration mechanism of redox mediators are presumed by van der Zee [15]. Redox mediators as reductase or coenzymes catalyze reactions by lowering the activation energy of the total reaction. Redox mediators, for example, artificial redox mediators such as AQDS, can accelerate both direct enzymatic reduction and mediated/indirect biological azo dye reduction (Fig. 3). In the case of direct enzymatic azo dye reduction, the accelerating effect of redox mediator will be due to redox mediator enzymatic reduction in addition to enzymatic reduction of the azo dye. Possibly, both reactions will be catalyzed by the same nonspecific periplasmic enzymes. In the case of azo dye reduction by reduced enzyme cofactors, the accelerating effect of redox mediator will either be due to an electron shuttle between the reduced enzyme cofactor and redox mediator or be due to redox mediator enzymatic reduction in addition to enzymatic reduction of the coenzymes. In the latter case, the addition of redox mediator simply increases the pool of electron carriers. [Pg.96]

The most important coenzymes in synthetic organic chemistry [14] and industrially applied biotransformations [15] are the nicotinamide cofactors NAD/ H (3a/8a, Scheme 43.1) and NAD(P)/H (3b/8b, Scheme 43.1). These pyridine nucleotides are essential components of the cell [16]. In all the reactions where they are involved, they serve solely as hydride donors or acceptors. The oxidized and reduced form of the molecules are shown in Scheme 43.1, the redox reaction taking place at the C-4 atom of the nicotinamide moiety. [Pg.1471]

Although the structures for molecules having niacin activity are simple, the forms in which they act in human biochemistry are not so simple. Nicotinic acid and nicotinamide are precursors for three complex coenzymes in multiple oxida-tion/reduction (redox) reactions nicotinamide mononucleotide, NMN nicotinamide adenine dinucleotide, NAD+ and nicotinamide adenine dinucleotide phosphate, NADP. I shall use NAD+ as representative of the class. NADH is the corresponding reduced form. ... [Pg.201]

Vitamin B2, or riboflavin, is the metabolic precursor to two flavin coenzymes essential for the integrity of a spectrum of redox reactions. [Pg.205]

Niacin, which refers to nicotinic acid and nicotinamide, is the metabolic precursor to three nicotinamide coenzymes. These are essential for the activity of a large number of enzymes catalyzing redox reactions. Pellagra is a niacin deficiency disease. [Pg.205]

Most compounds oxidized by the electron transport chain donate hydrogen to NAD+, and then NADH is reoxidized in a reaction coupled to reduction of a flavoprotein. During this transformation, sufficient energy is released to enable synthesis of ATP from ADP. The reduced flavoprotein is reoxidized via reduction of coenzyme Q subsequent redox reactions then involve cytochromes and electron transfer processes rather than hydrogen transfer. In two of these cytochrome redox reactions, there is sufficient energy release to allow ATP synthesis. In... [Pg.578]

Hydride Transfer in NAD+- and NADP -Dependent Enzymes. The transfer of the hydride ion in redox reaction of NAD+- and NADP+-dependent enzymes can occur either to the re- or the xi-face of the pyridine ring of the coenzyme . Such stereochemistry is crucial in the characterization of these enzymes. The same enzymes from different sources can express different stereospecificities. For example, E. coli NAD(P)+ transhydrogenase expressed one form of stereospecificity whereas the Pseudomonas aeruginosa enzyme catalyzes the identical reaction with the other NAD form . [Pg.145]

Riboflavin (vitamin Bj) is chemically specified as a 7,8-dimethyl-10-(T-D-ribityl) isoalloxazine (Eignre 19.22). It is a precnrsor of certain essential coenzymes, such as flavin mononucleotide (FMN) and flavin-adenine dinucleotide (FAD) in these forms vitamin Bj is involved in redox reactions, such as hydroxylations, oxidative carboxylations, dioxygenations, and the reduction of oxygen to hydrogen peroxide. It is also involved in the biosynthesis of niacin-containing coenzymes from tryptophan. [Pg.635]

Two derivatives of nicotinamide (pyridine-3-carboxylic amide), one of the B2 vitamins, nicotinamide adenine dinucleotide (NAD ) and nicotinamide adenine dinucleotide phosphate (NADP ), serve as redox coenzymes. Of the three heterocyclic ring systems found in these coenzymes, i.e. those of purine, ribose and pyridine, it is the pyridine portion that is reactive in redox reactions. Biologically, two oxidation states are important the oxidized form, NAD(P)+, and the 1,4-dihydro isomer of the two-electron reduced form, NAD(P)H (Scheme 1). Nicotinamide coenzymes interconvert between these two oxidation states in... [Pg.248]

The two oxidation states of (17) that are relevant in biopterin-dependent redox reactions are the four-electron and two-electron reduced forms, tetrahydrobiopterin (19) and p-quinonoid dihydrobiopterin (20), respectively. The oxidation state between these two, i.e. a radical, may also be relevant though it has not been detected as an intermediate in enzymatic reactions. Structurally, pteridines and flavins are rather similar and hence show similar chemical behavior in many respects. As a redox coenzyme, (19) is not encountered nearly as frequently as nicotinamides or flavins. It is, however, the cofactor of three very... [Pg.260]

NAD+ (structure 8.11, R = H) and NADP+ (structure 8.11, R = P03 ) function as coenzymes in redox reactions by reversibly accepting hydrogen at the 4 position of the nicotinamide ring (equation 8.12). [Pg.462]

Acid catalysis is also effective for enhancing the oxidizing ability of the excited states of flavins [59], which are important coenzymes in the biological redox reactions [60-62], Flavin analogs (FI) are known to be protonated at the N - 1 position in a strongly acidic aqueous solution (pK.-ca.0K63] ... [Pg.120]

Pterin coenzymes such as folic acid (pteroylglutamic acid) and biopterin, which contain a dicyclic pteridine ring, a part of the skeleton of flavins, are also known to play versatile roles in biological redox reactions [67]. The oxidizing ability of the excited state of a pteridine derivative (lumazine [Lu])... [Pg.121]

Ascorbic Acid Is Required to Maintain the Enzyme that Forms Hydroxyproline Residues in Collagen Vitamin B12 Coenzymes Are Associated with Rearrangements on Adjacent Carbon Atoms Iron-Containing Coenzymes Are Frequently Involved in Redox Reactions Metal Cofactors Lipid-Soluble Vitamins... [Pg.198]

Flavins are very versatile redox coenzymes. Flavopro-teins are dehydrogenases, oxidases, and oxygenases that catalyze a variety of reactions on an equal variety of substrate types. Since these classes of enzymes do not consist exclusively of flavoproteins, it is difficult to define catalytic specificity for flavins. Biological electron acceptors and donors in flavin-mediated reactions can be two-electron acceptors, such as NAD+ or NADP+, or a variety of one-electron acceptor systems, such as cytochromes (Fe2+/ Fe3+) and quinones, and molecular oxygen is an electron acceptor for flavoprotein oxidases as well as the source of oxygen for oxygenases. The only obviously common aspect of flavin-dependent reactions is that all are redox reactions. [Pg.208]

The other classes of flavoproteins in table 10.2 interact with molecular oxygen either as the electron-acceptor substrates in redox reactions catalyzed by oxidases or as the substrate sources of oxygen atoms for oxygenases. Molecular oxygen also serves as an electron acceptor and source of oxygen for metalloflavoproteins and dioxygenases, which are not listed in the table. These enzymes catalyze more complex reactions, involving catalytic redox components, such as metal ions and metal-sulfur clusters in addition to flavin coenzymes. [Pg.209]

Iron-Containing Coenzymes Are Frequently Involved in Redox Reactions... [Pg.217]

Nicotinamide coenzymes act as intracellular electron carriers to transport reducing equivalents between metabolic intermediates. They are cosubstrates in most of the biological redox reactions of alcohols and carbonyl compounds and also act as cocatalysts with some enzymes. [Pg.222]

Flavin coenzymes act as cocatalysts with enzymes in a large number of redox reactions, many of which involve 02. [Pg.222]

Enzymes that catalyze redox reactions often require a coenzyme such as NAD+ or FADH2 in addition to a substrate. These are all multiple substrate enzymes. Each substrate and coenzyme will have its own Km value. The substrates for glutamate dehydrogenase, an enzyme with three substrates in both forward and reverse directions, are shown in Scheme 4.10 with their K values.9... [Pg.79]

Several reactions in metabolism are oxidation-reduction (or redox) reactions. Two of the principal redox carriers are nicotinamide adenine dinucleotide (NAD+) and coenzyme Q. Remember that we live in an oxidizing world, so species that are in the reduced form are frequently high-energy compounds that react exothermically with oxygen. Also recall that organic molecules are reduced by adding bonds to hydrogen. [Pg.332]

Niacin, riboflavin, and lipoic acid give rise to coenzymes that participate in redox reactions. Niacin and riboflavin are essential in the human diet, whereas lipoic acid may be synthesized within the human organism. Lipoic acid is a required growth factor in many microorganisms and protozoa. It reacts covalently with the e-amino groups of apoenzymes to give the active holoenzymes ... [Pg.132]

Niacin ia a nutritional term applied to both nicotinic acid and nicotinamide and to a mixture of the two. Their structures and those of their coenzymes are given in Table 6.1. Numerous redox reactions use NAD+ and NADP+ or NADH and NADPH. The latter are used largely in reactions designed to reductively synthesize various substances, mostly in the extramitochondrial areas of the cell. NAD+, on the other hand, is used largely in its oxidized form in catabolic redox reactions. The rat liver cytosol NADPH/NADP+ ratio is about 80, whereas its NADH/NAD+ ratio is only 8 x 10 4. Table 6.3 lists some biochemical reactions in which these cofactors participate. It shows that they are of crucial importance in the metabolism of carbohydrates, fats, and amino acids. [Pg.132]


See other pages where Redox reaction coenzyme is mentioned: [Pg.113]    [Pg.710]    [Pg.62]    [Pg.50]    [Pg.226]    [Pg.701]    [Pg.1471]    [Pg.36]    [Pg.30]    [Pg.184]    [Pg.142]    [Pg.44]    [Pg.1]    [Pg.512]    [Pg.627]    [Pg.248]    [Pg.251]    [Pg.253]    [Pg.1013]    [Pg.710]    [Pg.114]    [Pg.176]    [Pg.171]   
See also in sourсe #XX -- [ Pg.197 ]




SEARCH



Redox coenzymes coenzyme

© 2024 chempedia.info