Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt conjugated dienes

Metal salts of neodecanoic acid have also been used as catalysts in the preparation of polymers. For example, bismuth, calcium, barium, and 2kconium neodecanoates have been used as catalysts in the formation of polyurethane elastomers (91,92). Magnesium neodecanoate [57453-97-1] is one component of a catalyst system for the preparation of polyolefins (93) vanadium, cobalt, copper, or kon neodecanoates have been used as curing catalysts for conjugated-diene butyl elastomers (94). [Pg.105]

The cobalt(I) complex CoBr(PPh3)3 as a boron trifluoride etherate selectively hydrogenates conjugated dienes to monoenes via an unusual 1,2-hydrogen addition at the more-substituted double bond (186). [Pg.334]

A mild aerobic palladium-catalyzed 1,4-diacetoxylation of conjugated dienes has been developed and is based on a multistep electron transfer46. The hydroquinone produced in each cycle of the palladium-catalyzed oxidation is reoxidized by air or molecular oxygen. The latter reoxidation requires a metal macrocycle as catalyst. In the aerobic process there are no side products formed except water, and the stoichiometry of the reaction is given in equation 19. Thus 1,3-cyclohexadiene is oxidized by molecular oxygen to diacetate 39 with the aid of the triple catalytic system Pd(II)—BQ—MLm where MLm is a metal macrocyclic complex such as cobalt tetraphenylporphyrin (Co(TPP)), cobalt salophen (Co(Salophen) or iron phthalocyanine (Fe(Pc)). The principle of this biomimetic aerobic oxidation is outlined in Scheme 8. [Pg.667]

The transition group compound (catalyst) and the metal alkyl compound (activator) form an organometallic complex through alkylation of the transition metal by the activator which is the active center of polymerization (Cat). With these catalysts not only can ethylene be polymerized but also a-olefins (propylene, 1-butylene, styrene) and dienes. In these cases the polymerization can be regio- and stereoselective so that tactic polymers are obtained. The possibilities of combination between catalyst and activator are limited because the catalytic systems are specific to a certain substrate. This means that a given combination is mostly useful only for a certain monomer. Thus conjugated dienes can be polymerized by catalyst systems containing cobalt or nickel, whereas those systems... [Pg.216]

Cobalt hydrocarbonyl reacts rapidly with conjugated dienes, initially forming 2-butenylcobalt tetracarbonyl derivatives. These compounds lose carbon monoxide at 0°C. or above, forming derivatives of the relatively stable l-methyl-ir-allyl-cobalt tricarbonyl. As with normal alkylcobalt tetracarbonyls, the 2-butenyl derivatives will absorb carbon monoxide, forming the acyl compounds but these acyl compounds also slowly lose carbon monoxide at 0°C. or above, forming 7r-allyl complexes. The acyl compounds can be isolated as the monotriphenylphosphine derivatives (47). [Pg.190]

Other reactions of dienes with metal atoms are only of a limited synthetic use. Dibenzylideneacetone (PhCH=CH—CO—CH=CHPh DBA) reacts with palladium vapor to afford Pd2(DBA)3, a complex in which the coordination is through the two C=C units and does not involve the C=0 (5, 92). Cobalt vapor undergoes an extremely complicated reaction with 1,4-pentadiene, producing pentenes, C5H6, and various polymers as well as the organometallic product, HCo( 1,3-pen tadiene)2, which involves isomerization from a nonconjugated to a conjugated diene (104, 110). [Pg.72]

Similar additions of transition metal hydrocarbonyls to conjugated dienes have been described, there being a close parallel in the addition of cobalt hydrocarbonyl to butadiene (6). [Pg.212]

Cyanide-containing cobalt catalysts, particularly potassium pentacyanocobalta-te(II) K3[Co(CN)5], are used in the reduction of activated alkenes (conjugated dienes).26,31 [Co(CO)4]2 is best known as a hydroformylation catalyst, but hydrogenation is also possible under specific conditions. Phosphine-substituted analogs are more successful. [Pg.633]

The addition of hydrogen cyanide (HCN) to carbon-carbon double bonds activated by electron-withdrawing groups in the presence of a base as a catalyst (a variation of the Michael Reaction) has been known for a long time. Nitriles were also obtained by hydrocyanation of branched olefins, such as isobutylene and trimethylethylene, in vapor phase reactions in particular the reactions over alumina (3) and cobalt-on-alumina (4) were reported in the late 1940s and early 1950s. Addition of HCN to conjugated dienes in the presence of cuprous salts (vapor and liquid phase) was reported as early as 1947 (5). [Pg.3]

The hydroformylation of conjugated dienes with unmodified cobalt catalysts is slow, since the insertion reaction of the diene generates an tj3-cobalt complex by hydride addition at a terminal carbon (equation 10).5 The stable -cobalt complex does not undergo facile CO insertion. Low yields of a mixture of n- and iso-valeraldehyde are obtained. The use of phosphine-modified rhodium catalysts gives a complex mixture of Cs monoaldehydes (58%) and C6 dialdehydes (42%). A mixture of mono- and di-aldehydes are also obtained from 1,3- and 1,4-cyclohexadienes with a modified rhodium catalyst (equation ll).29 The 3-cyclohexenecarbaldehyde, an intermediate in the hydrocarbonylation of both 1,3- and 1,4-cyclo-hexadiene, is converted in 73% yield, to the same mixture of dialdehydes (cis.trans = 35 65) as is produced from either diene. [Pg.922]

An unusual synthesis of acyldienes from conjugated dienes, carbon monoxide, and alkyl or acyl halides using cobalt carbonylate anion as a catalyst should be mentioned here (57). The reaction apparently involves the addition of an acylcobalt carbonyl to a conjugated diene to produce a l-acylmethyl-7r-allylcobalt tricarbonyl, followed by elimination of cobalt hydrocarbonyl in the presence of base. The reaction can thus be made catalytic. Since the reaction was discussed in detail in the recent review by Heck (59), it will not be pursued further here. [Pg.136]

Conjugated dienes can be reduced to monoolefins by treatment with hydrogen, hydrated cobalt chloride, potassium cyanide, potassium chloride, sodium hydroxide, and tetramethylammonium chloride or benzyltri-ethylammonium chloride as the phase-transfer catalyst. The hydridopen-tacyanocobaltate anion, HCo(CN)s3, is the probable metal catalyst (47-... [Pg.197]

The polymerization of conjugated dienes to products with a controlled structure usually occurs in the presence of alkylaluminium compounds. The choice not only the transition metal but also of its ligands is of importance. Some systems produce a certain kind of stereochemical structure irrespective of external conditions. So, for example, vanadium compounds yield predominantly the trans-1,4 structure whereas cobalt salts yield the c -1,4 structure. Other catalysts are very sensitive, and a small external effect completely changes their stereochemical activity [267b] [e. g. Cr(acetylacetona-te)3-R3Al]. Examples of several catalytic systems are summarized in Table 7. [Pg.134]

The cobalt(II) cyanide complex Co(CN)5 " in aqueous solution acts as a homogeneous catalyst for the selective hydrogenation of conjugated dienes to monoenes (81). The initial step in this catalysis is the reaction... [Pg.171]

Soluble cobalt and nickel catalysts for conjugated diene polymerization are usually prepared in the presence of monomer with the formation of a TT-allylic structure as a relatively stable intermediate, but the nature of attachment of other ligands to the active site is not known. Aluminium halides and cobalt halides react to form complexes of the structure (IX) [57]... [Pg.144]

The use of transition metal complexes as catalysts allows 1,4-cycloadditions to be involved as the major pathway in several cases when conjugated dienes are reacted with norbornadiene. No normal homo-Diels-Alder reaction was observed by reaction of the latter with buta-1,3-diene in the presence of an iron complex catalyst, the main product obtained was such a 1,4-adduct 2f the same adduct 2 was obtained in good yield and selectivity when a catalyst formed from cobalt(II) chloride, diethylaluminum chloride and bis(l,2-diphenylphos-phinojethane was used. ... [Pg.986]


See other pages where Cobalt conjugated dienes is mentioned: [Pg.168]    [Pg.994]    [Pg.1037]    [Pg.13]    [Pg.9]    [Pg.694]    [Pg.191]    [Pg.218]    [Pg.810]    [Pg.1572]    [Pg.285]    [Pg.567]    [Pg.1097]    [Pg.1141]    [Pg.1146]    [Pg.1518]    [Pg.242]    [Pg.42]    [Pg.68]    [Pg.1024]    [Pg.3255]    [Pg.694]    [Pg.209]   
See also in sourсe #XX -- [ Pg.380 ]




SEARCH



1,3-Diene, conjugated

Cobalt diene

Conjugate 1,3 dienes

Conjugation Dienes, conjugated)

Dienes conjugated

© 2024 chempedia.info