Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt catalyst promoters

Vada, S., Hoff, A., Adnane, E., Schanke, D., and Holmen, A. 1995. Fischer-Tropsch synthesis on supported cobalt catalysts promoted by platinum and rhenium. Topics Catal. 2 155-62. [Pg.46]

Toray (2) process for making terephthalic acid by oxidizing p-xylene, using a cobalt catalyst promoted by paraldehyde. [Pg.272]

Volf and Pasek compared various cobalt and nickel catalysts in the hydrogenation of stearonitrile at 150°C and 6 MPa H2.27 A cobalt catalyst promoted by Mn (5% Mn) gave the best yield of 95.4% of primary amine together with 4.6% of the secondary amine (eq. 7.28). It is to be noted that the high yield was obtained in the absence of ammonia over this catalyst. [Pg.263]

Reduction. Hydrogenation of dimethyl adipate over Raney-promoted copper chromite at 200°C and 10 MPa produces 1,6-hexanediol [629-11-8], an important chemical intermediate (32). Promoted cobalt catalysts (33) and nickel catalysts (34) are examples of other patented processes for this reaction. An eadier process, which is no longer in use, for the manufacture of the 1,6-hexanediamine from adipic acid involved hydrogenation of the acid (as its ester) to the diol, followed by ammonolysis to the diamine (35). [Pg.240]

A one-step LPO of cyclohexane directly to adipic acid (qv) has received a lot of attention (233—238) but has not been implemented on a large scale. The various versions of this process use a high concentration cobalt catalyst in acetic acid solvent and a promoter (acetaldehyde, methyl ethyl ketone, water). [Pg.344]

A thkd method utilizes cooxidation of an organic promoter with manganese or cobalt-ion catalysis. A process using methyl ethyl ketone (248,252,265—270) was commercialized by Mobil but discontinued in 1973 (263,264). Other promoters include acetaldehyde (248,271—273), paraldehyde (248,274), various hydrocarbons such as butane (270,275), and others. Other types of reported activators include peracetic acid (276) and ozone (277), and very high concentrations of cobalt catalyst (2,248,278). [Pg.344]

The original catalysts for this process were iodide-promoted cobalt catalysts, but high temperatures and high pressures (493 K and 48 MPa) were required to achieve yields of up to 60% (34,35). In contrast, the iodide-promoted, homogeneous rhodium catalyst operates at 448—468 K and pressures of 3 MPa. These conditions dramatically lower the specifications for pressure vessels. Yields of 99% acetic acid based on methanol are readily attained (see Acetic acid Catalysis). [Pg.51]

Catalyst choice is strongly influenced by the nature of the feedstock to be hydrotreated. Thus, whereas nickel-promoted and cobalt—nickel-promoted molybdenum catalysts can be used for desulfurization of certain feedstocks and operating conditions, a cobalt-promoted molybdenum catalyst is generally preferred in this appHcation. For denitrogenation and aromatics saturation, nickel-promoted molybdenum catalysts usually are the better choice. When both desulfurization and denitrogenation of a feedstock are required, the choice of catalyst usually is made so that the more difficult operation is achieved satisfactorily. [Pg.201]

A Belgian patent (178) claims improved ethanol selectivity of over 62%, starting with methanol and synthesis gas and using a cobalt catalyst with a hahde promoter and a tertiary phosphine. At 195°C, and initial carbon monoxide pressure of 7.1 MPa (70 atm) and hydrogen pressure of 7.1 MPa, methanol conversions of 30% were indicated, but the selectivity for acetic acid and methyl acetate, usehil by-products from this reaction, was only 7%. Ruthenium and osmium catalysts (179,180) have also been employed for this reaction. The addition of a bicycHc trialkyl phosphine is claimed to increase methanol conversion from 24% to 89% (181). [Pg.408]

The catalyzed oxidation of p-xylene produces terephthalic acid (TPA). Cobalt acetate promoted with either NaBr or HBr is used as a catalyst in an acetic acid medium. Reaction conditions are approximately 200°C and 15 atmospheres. The yield is about 95% ... [Pg.295]

Cobaltites with spinel stractnre have compositions MC02O4, where M is a metal forming divalent cations, snch as zinc, cadminm, magnesinm, nickel, manganese, and divalent cobalt. In contrast to the perovskites, the cobaltites have a rather high catalytic activity already at room temperatnre. Experiments show that the activity increases with increasing spinel structure content (i.e., increasing number of Co ions) of the catalyst snrface. The trivalent cobalt ions promote the withdrawal of... [Pg.545]

The polymers were converted to supported catalysts corresponding to homogeneous complexes of cobalt, rhodium and titanium. The cobalt catalyst exhibited no reactivity in a Fischer-Tropsch reaction, but was effective in promoting hydroformylation, as was a rhodium analog. A polymer bound titanocene catalyst maintained as much as a 40-fold activity over homogeneous titanocene in hydrogenations. The enhanced activity indicated better site isolation even without crosslinking. [Pg.7]

Jacobs G., Das T.K., Zhang Y., Li J., Racoillet G., Davis B.H. 2002. Fischer-Tropsch synthesis Support, loading and promoter effects on the reducibility of cobalt catalysts. Appl. Catal. A Gen. 233 263-81. [Pg.14]

Bezemer, G. L., Radstake, P. B., Falke, U., Oosterbeek, H., Kuipers, H. P. C. E., van Dillen, A., and de Jong, K. P. 2006. Investigation of promoter effects of manganese oxide on carbon nanofiber-supported cobalt catalysts for Fischer-Tropsch synthesis. Journal of Catalysis 237 152-61. [Pg.29]

Schulz, H., Claeys, M., and Harms, S. 1997. Effect of water partial pressure on steady state Fischer-Tropsch activity and selectivity of a promoted cobalt catalyst. Stud. Surf. Sci. Catal. 107 193-200. [Pg.46]

Additives such as rare earth or noble metals are generally introduced into industrial cobalt FTS catalysts as structural or reduction promoters.92 The addition of various promoters to cobalt catalysts has also been shown to decrease the amount of carbon produced during the FTS.84 87 93 94 Also, the addition of promoter elements may decrease the temperature of regeneration, preventing the possible sintering of supported cobalt particles during such treatments.92... [Pg.71]

Viswanathan, B., and Gopalkrishnan, R. 1986. Effect of support and promoter in Fischer-Tropsch cobalt catalysts. J. Catal. 99 342-48. [Pg.118]

The carbon number distribution of Fischer-Tropsch products on both cobalt and iron catalysts can be clearly represented by superposition of two Anderson-Schulz-Flory (ASF) distributions characterized by two chain growth probabilities and the mass or molar fraction of products assigned to one of these distributions.7 10 In particular, this bimodal-type distribution is pronounced for iron catalysts promoted with alkali (e.g., K2C03). Comparing product distributions obtained on alkali-promoted and -unpromoted iron catalysts has shown that the distribution characterized by the lower growth probability a, is not affected by the promoter, while the growth probability a2 and the mass fraction f2 are considerably increased by addition of alkali.9 This is... [Pg.200]

Meanwhile, Wacker Chemie developed the palladium-copper-catalyzed oxidative hydration of ethylene to acetaldehyde. In 1965 BASF described a high-pressure process for the carbonylation of methanol to acetic acid using an iodide-promoted cobalt catalyst (/, 2), and then in 1968, Paulik and Roth of Monsanto Company announced the discovery of a low-pressure carbonylation of methanol using an iodide-promoted rhodium or iridium catalyst (J). In 1970 Monsanto started up a large plant based on the rhodium catalyst. [Pg.256]

GTSC [Gas to syncrude] A process for converting natural gas to a synthetic crude oil which may be mixed with natural crude oil and used in conventional oil refineries. Based on F-T technology, but using a proprietary slurry bubble column reactor with a promoted cobalt catalyst. Developed by Syncrude Technology, Pittsburgh, PA, in the 1990s. [Pg.119]

Another SIMS study on model systems concerns molybdenum sulfide catalysts. The removal of sulfur from heavy oil fractions is carried out over molybdenum catalysts promoted with cobalt or nickel, in processes called hydrodesulfurization (HDS) [17]. Catalysts are prepared in the oxidic state but have to be sulfided in a mixture of H2S and H2 in order to be active. SIMS sensitively reveals the conversion of Mo03 into MoSi, in model systems of MoCf supported on a thin layer of Si02 [21]. [Pg.107]


See other pages where Cobalt catalyst promoters is mentioned: [Pg.193]    [Pg.357]    [Pg.193]    [Pg.357]    [Pg.244]    [Pg.458]    [Pg.164]    [Pg.49]    [Pg.422]    [Pg.178]    [Pg.52]    [Pg.192]    [Pg.125]    [Pg.324]    [Pg.235]    [Pg.2]    [Pg.51]    [Pg.71]    [Pg.118]    [Pg.163]    [Pg.245]    [Pg.246]    [Pg.265]    [Pg.300]    [Pg.13]   
See also in sourсe #XX -- [ Pg.116 ]




SEARCH



Atomic-Scale Structure of the Cobalt-Promoted Catalyst

Catalyst promotion

Cobalt catalyst

Cobalt catalysts catalyst

Cobalt-molybdenum catalysts promoter atoms

Cobalt-promoted catalyst

Cobalt-promoted catalyst

Promoted catalysts

Promoter, catalyst

© 2024 chempedia.info