Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coatings continued immersion plating

Principles Immersion plating resulting from a displacement reaction involving the metal to be coated can continue only as long as the less noble substrate remains accessible to the plating solution, and therefore as plating proceeds, the quantity of A/, deposited, and of A/j dissolved, falls. Dissolution of A/j can be avoided by coupling it with a less noble metal A/, so that only A/j dissolves, i.e, by internal electrolysis. [Pg.433]

Electroless deposition should not be confused with metal displacement reactions, which are often known as cementation or immersion plating processes. In the latter, the less noble metal dissolves and eventually becomes coated with a more noble metal, and the deposition process ceases. Coating thicknesses are usually < 1 pm, and tend to be less continuous than coatings obtained by other methods. A well-known example of an immersion plating process that has technological applications is the deposition of Sn on Cu [17] here a strong complexant for Cu(I), such as thiourea, forces the Cu(I)/Cu couple cathodic with respect to the Sn(II)/Sn couple, thereby increasing the thermodynamic stability in solution of thiourea-complexed Cu(I) relative to Sn(II). [Pg.227]

Various bolt/nut combinations have been used with modular seals, ranging from vanilla cadmium-plated carbon steel to today s more exotic metric two-part zinc dichromate sub-coatings per ASTM B-663 under a propriety organic outer coating for superior corrosion resistance. To benchmark the corrosion resistance of these different combinations, four bolts were continuously immersed in tap water for four years, the results of which are shown in Figure 5. [Pg.39]

At the start the cathode is invariably a metal different from that to be deposited. Frequently, the aim is to coat a base metal with a more noble one, but it may not be possible to do this in one step. When a metal is immersed in a plating bath it will corrode unless its potential is sufficiently low to suppress its ionisation. Fortunately, a low rate of corrosion is tolerable for a brief initial period. There are cases where even when a cathode is being plated at a high cathodic (nett) current density, the substrate continues to corrode rapidly because the potential (determined by the metal deposited) is too high. No satisfactory coating forms if the substrate dissolves at a high rate concurrently with electrodeposition. This problem can be overcome by one or more of the following procedures ... [Pg.351]

It has been observed the formation of continuous liquids on high-energy solid surfaces, such as mica, quartz, and silica, when those surfaces are subjected to immersion and emersion in water [13,14]. A continuous film of water on a hydrophilic (i.e., high energy) plasma polymer-coated glass slide moments after it was immersed to a depth of 3 cm in a beaker of DDI water is shown in Figure 26.21A. The water film remained continuous as it receded to the bottom of the plate. After about 2 min the water film front receded to approximately 1 cm from the bottom of the plate, as shown in Figure 26.21B. The presence and stability of a continuous water film can be detected and quantified by the Wilhelmy method [15]. [Pg.545]


See other pages where Coatings continued immersion plating is mentioned: [Pg.197]    [Pg.692]    [Pg.65]    [Pg.697]    [Pg.106]    [Pg.65]    [Pg.190]    [Pg.450]    [Pg.551]    [Pg.654]    [Pg.262]    [Pg.218]    [Pg.106]    [Pg.515]    [Pg.15]    [Pg.748]    [Pg.752]    [Pg.150]    [Pg.447]   
See also in sourсe #XX -- [ Pg.12 , Pg.101 ]

See also in sourсe #XX -- [ Pg.12 , Pg.101 ]




SEARCH



Coatings continued

Continuous coating

Continuous plating

Immersed

Immersion

Immersion plating

Plate coating

© 2024 chempedia.info